The HLLD Riemann solver based on magnetic field decomposition method for the numerical simulation of magneto-hydrodynamics

Xiaocheng Guo a,*, Vladimir Florinski b, Chi Wang a

a State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
b Department of Space Science, University of Alabama, Huntsville, AL, 35899, United States

Article history:
Received 30 May 2016
Received in revised form 23 September 2016
Accepted 24 September 2016
Available online 29 September 2016

Keywords:
HLLD
MHD
Riemann solver
Numerical simulation
Magnetosphere

ABSTRACT

By splitting magnetic field into two components (internal plus external), we derived an extended formulation of the HLLD Riemann solver for numerical simulation of magneto-hydrodynamics (MHD). This new solver is backward compatible with the standard HLLD Riemann solver when the external component of the magnetic field is zero. Moreover, the solver is more robust than the standard HLLD solver in applications to low plasma β (the ratio between thermal and magnetic pressures) cases, where the thermal pressure may become negative from subtracting the kinetic and large magnetic energy from the large total energy density in a Godunov type numerical scheme. Our numerical tests show that the extended HLLD solver works well for the cases of magnetic field decomposition, and maintains high resolution similar to the standard HLLD.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamic (MHD) equations are widely used to describe the macro-scale behavior of plasma in many sub-disciplines of physics. Godunov type schemes are the commonly applied numerical methods for the Euler form of the conservative MHD equations [1,2]. In these schemes, zone-averaged MHD conserved values are updated from numerical fluxes at the grid interfaces at each time step. Riemann solvers are essential for the numerical flux calculation, and many kinds have been proposed in the literature. Some examples include the Roe-type solvers [3,4,5], the characteristic method [6], the local Lax–Friedrichs (LLF) method [7], and HLL-type solvers [8–10]. The LLF (also called Rusanov) solver is the simplest but also the most dissipative among those mentioned. The Roe-type solver includes every MHD waves modes, making it accurate for MHD simulation. However, this linearized solver does not preserve the positivity of density and pressure, and needs eigen-decomposition which is complicated and time-consuming in MHD. The characteristic method has properties similar to the Roe solver, but only applies to the Lagrangian form of MHD equations [11]. Comparing with the Roe-type, the HLL-type solvers are robust, positivity preserving and computationally inexpensive, which explains their popularity with many MHD applications. There are many extended versions of the HLL-type solver that differ in the choice of the middle states of the Riemann fan. The original HLL solver [9] includes a single middle state, the HLLC solver [12–14] has two, and the most advanced HLLD solver [15] has four. Theoretically, the single middle state HLL solver is too diffusive to re-

* Corresponding author.
E-mail address: guogxc@gmail.com (X. Guo).

http://dx.doi.org/10.1016/j.jcp.2016.09.057
0021-9991/© 2016 Elsevier Inc. All rights reserved.
solving isolated contact discontinuities properly, so anti-diffusion terms are added to increase the accuracy in the so-called HLLEM solver [9]. However, a partial eigen-decomposition method is needed in the HLLEM solver, making it less efficient for MHD than for gasdynamic applications. The HLLD solver is the most accurate among the HLL-type solvers that exclude the eigen-decomposition because it has the most candidates for the numerical flux.

In space physics, the plasma β could be very low near the Sun or a planet, where strong internal magnetic field dominates in the inner region. For example, the plasma β could be less than 10^{-4} at $r \sim 4R_E$ (Earth radius), where r is the radial distance from the Earth’s center. Such a low β will cause numerical issue for the conservative numerical scheme because the pressure may become negative because of subtracting the kinetic and the large magnetic energy from the large total energy density. Another problem may arise for the strong internal field. The magnetic energy density varies rapidly in space ($\sim 1/r^6$) if we treat the internal field as a dipole. In that case performing the spatial discretization of the magnetic energy density could produce unphysical oscillations and destroy the simulation. In order to overcome this difficulty, according to the previous experience [16], we need to decompose the magnetic field into two components, the static internal field and the time-dependent external field. As we will discuss in the next section, the spatial discretization is only applied to the external magnetic energy density, which avoids the numerical issue related to the total magnetic energy density. At the same time, the plasma β associated with the external field is much larger than that of the total field, and the above mentioned low β issue is avoided.

Based on this decomposition method for the magnetic field, the Roe-type Riemann solver is used straightforwardly for the decomposed MHD equation [16–18]. However, the HLLC and HLLD solvers must be modified if applied in a fully conservative decomposed MHD system [19]. An initial attempt has been reported for the HLLD solver in numerical simulations of the magnetosphere, but the method still needs further development [20]. In this paper, based on our former work [19], we will extend the HLLD solver for the decomposed MHD equation.

2. The decomposed MHD equations

The magnetic field \mathbf{B} is split into two components, the internal field \mathbf{B}_0 and the external field \mathbf{B}_1,

$$\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_1,$$

where \mathbf{B}_0 is static and curl free $\nabla \times \mathbf{B}_0 = 0$, and \mathbf{B}_1 is time variable. The ideal MHD equations can be written in conservative form as [16]

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) = 0,$$

where \mathbf{U} is the vector of conservative variables, and $\mathbf{F}(\mathbf{U})$ represents the corresponding flux vector,

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho \mathbf{u} \\ \rho \mathbf{u} \cdot \mathbf{B}_1 \\ e_1 \end{pmatrix}, \quad \mathbf{F}(\mathbf{U}) = \begin{pmatrix} \rho \mathbf{u} \\ \rho \mathbf{u} \mathbf{u} + p \mathbf{l} - \frac{1}{2} \mathbf{B}_0^2 \mathbf{l} + \mathbf{B}_0 \mathbf{B}_0 \\ \mathbf{u} \mathbf{B}_0 - \mathbf{B}_0 \mathbf{u} \\ (e_1 + p_1) \mathbf{u} - (\mathbf{u} \cdot \mathbf{B}_1) \mathbf{B}_1 + (\mathbf{B}_0 \times \mathbf{u}) \times \mathbf{B}_1 \end{pmatrix}$$

where ρ is density, and $\mathbf{u} = (u_x, u_y, u_z)$ is velocity. The total pressure p, p_1, and the total energy density e_1 are defined as

$$p = p_{\text{gas}} + \frac{B_1^2}{2}, \quad p_1 = p_{\text{gas}} + \frac{B_1^2}{2}, \quad e_1 = \frac{p_{\text{gas}}}{\gamma - 1} + \frac{\rho u^2}{2} + \frac{B_1^2}{2},$$

where p_{gas} is the thermal pressure of plasma. In one dimension (the x direction) the system (3) reads

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho u_x \\ \rho u_y \\ \rho u_z \\ B_{1x} \\ B_{1y} \\ B_{1z} \\ e_1 \end{pmatrix}, \quad \mathbf{F}(\mathbf{U}) = \begin{pmatrix} \rho u_x \\ \rho u_x^2 + p - B_x^2 - \frac{1}{2} B_0^2 + B_{0x}^2 \\ \rho u_x u_y - B_x B_y + B_{0x} B_{0y} \\ \rho u_x u_z - B_x B_z + B_{0x} B_{0z} \\ u_x B_y - u_y B_x \\ u_x B_z - u_z B_x \\ (e_1 + p_1)u_x - (\mathbf{u} \cdot \mathbf{B}_1) B_{1x} + (\mathbf{B}_0 \cdot \mathbf{u}) B_{0x} \end{pmatrix}.$$

B_{1x} is constant along x direction because the corresponding flux is zero (divergence free constraint). In numerical applications, it is difficult to maintain the zero divergence for the magnetic field if no extra cleaning methods is applied [21,22,18].

The ideal MHD equations have seven eigenvalues λ_{1-7}, including one entropy wave, two Alfvén waves, two fast and two slow magneto-acoustic waves:

$$\lambda_4 = u_x, \quad \lambda_{2,6} = u_x \mp c_a, \quad \lambda_{1,7} = u_x \mp c_f, \quad \lambda_{3,5} = u_x \mp c_s$$

(6)
where
\[
c_a = \frac{|B_x|}{\sqrt{\rho}}, \quad c_{f,s} = \left\{ \begin{array}{ll}
\sqrt{\frac{(\gamma p + B \cdot B) \pm \sqrt{(\gamma p + B \cdot B)^2 - 4 \gamma p B_x^2}}{2\rho}} & \\
\end{array} \right.
\]

where the plus sign corresponds to fast and the minus sign to slow waves. The eigenvalues are ordered such that \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4 \leq \lambda_5 \leq \lambda_6 \leq \lambda_7\).

Sometimes two or more eigenvalues can be equal, indicating that the corresponding waves may coincide with each other. It is difficult and time-consuming to solve the Riemann problem exactly in numerical simulations. Therefore, we prefer to use an approximate solution that simplifies the wave structures of the system. In the simplest approach, we only consider the two fast waves, and average the middle states between the characteristics \(\lambda_1\) and \(\lambda_7\), which result in the HLL Riemann solver. As shown in Fig. 1, the Riemann fan is constructed from the two fast waves \(S_L\) and \(S_R\). The HLL conservative variables \(U_{HLL}\) are defined as [8]
\[
U_{HLL} = \left\{ \begin{array}{ll}
U_L & \text{if } S_L > 0 \\
U^* & \text{if } S_L \leq 0 \leq S_R \\
U_R & \text{if } S_R < 0
\end{array} \right.
\]
(7)

where the middle (subsonic) state vector \(U^*\) is
\[
U^* = \frac{S_R U_R - S_L U_L - (F_R - F_L)}{S_R - S_L}
\]
(8)
The HLL flux is given by
\[
F_{HLL} = \left\{ \begin{array}{ll}
F_L & \text{if } S_L > 0 \\
F^* & \text{if } S_L \leq 0 \leq S_R \\
F_R & \text{if } S_R < 0
\end{array} \right.
\]
(9)

where \(F^*\) is given by
\[
F^* = \frac{S_R F_L - S_L F_R + S_L S_R (U_R - U_L)}{S_R - S_L}
\]
(10)

Here \(F_L = F(U_L)\) and \(F_R = F(U_R)\), but \(F^* \neq F(U^*)\). Moreover, estimates for \(S_L\) and \(S_R\) are needed to guarantee that the solver satisfies an entropy inequality [23], resolves isolated shocks exactly [8] and preserves positivity [9]. Here we use the effective method proposed by Einfeldt et al. [9].

However, the HLL solver cannot resolve isolated contact discontinuities, and is too dissipative for numerical simulations. In order to overcome this deficiency, we can add the entropy wave \(\lambda_d\) in the middle states and get the two middle states that are averaged from the states between the two fast waves \(\lambda_1, \lambda_7\) and the discontinuity \(\lambda_d\). This treatment results in the four-state HLLC Riemann solver. Further, a more precise solution can be found if the two Alfven waves \(\lambda_2, \lambda_6\) are taken into account in the two middle states, respectively. Altogether, six states are present in this version, known as the HLLD solver. In the next section, we will revisit the derivation of the HLLD solver [15], and obtain the solution for the decomposed MHD system.

3. HLLD Riemann solvers for the decomposed MHD

As Fig. 2 shows, the HLLD solver has four middle states, \(U^*_L, U^*_R, U^*_{L*}\) and \(U^*_R\), which are separated by two moving Alfven waves with speeds \(S^*_L\) and \(S^*_R\), and the contact wave with speed \(S_M\). The solution is expressed as follows:

\[
\begin{align*}
S_{M}^\alpha &= S_{L}^\alpha - F_{\alpha}^L = S_{R}^\alpha - F_{\alpha}^R, \\
S_{M}^\alpha u_{\alpha}^* - F_{\alpha}^{**} &= S_{\alpha}^* u_{\alpha}^* - F_{\alpha}^R, \\
S_{M}^\alpha U_{\alpha}^* - F_{\alpha}^{**} &= S_{M}^\alpha U_{\alpha}^* - F_{\alpha}^{**}.
\end{align*}
\]

respectively, where the subscript \(\alpha \) refers to either \(L \) or \(R \). Using Eq. (5), we rewrite Eq. (14) as follows (\(\alpha \) was placed outside the brackets to simplify the notations):

\[
S_{\alpha}^* \begin{pmatrix}
\rho^* \\
\rho^* u_x^* \\
\rho^* u_y^* \\
\rho^* u_z^* \\
B_{1x}^* \\
B_{1y}^* \\
B_{1z}^* \\
e_1^*
\end{pmatrix}
= \begin{pmatrix}
\rho^* q^* \\
\rho^* u_x^* q^* + p^* - B_x^2 \\
\rho^* u_y^* q^* - B_x B_y \\
\rho^* u_z^* q^* - B_z B_y \\
0 \\
u_x^* B_y^* - u_y^* B_x^* \\
u_z^* B_y^* - u_y^* B_z^* \\
(e_1^* + p_1^*) q^* - (B_1 \cdot u^*) B_{1x}^* + (B_1 \cdot B_0) q^* - (B_1 \cdot u^*) B_{0x}^*
\end{pmatrix}.
\]

Note that the internal field terms in the momentum flux in Eq. (5) cancel. For simplicity, we assume that the waves are along the x direction (\(n = (1, 0, 0) \)),

\[
u_{nx} = q_{\alpha}^*, \quad u_{nx}^* = q_{\alpha}^*, \quad u_{nx}^{**} = q_{\alpha}^{**}.
\]

To determine \(U_{\alpha}^* \) and \(F (U_{\alpha}^*) \), following the assumption by Toro et al. [24], Batten et al. [25] specified that

\[
S_{M} = q_{\alpha}^* = q_{\alpha}^{**} = q^*.
\]
where \(q^* \) is the average velocity in the intermediate states that can be extracted from the HLL approximation state \(U^* \) in Eq. (8). This gives the expression

\[
S_M = q^* = \frac{(\rho u_{L})^*}{\rho^*} = \frac{\rho R q R (S_R - q_R) - \rho L q L (S_L - q_L) + p_L - p_R - B_{LR}^2 + B_{SR}^2}{\rho R (S_R - q_R) - \rho L (S_L - q_L)}.
\]

(20)

From the pressure balance condition \(p_L^* = p_R^* \), and the assumption \(u_{LR}^* = q_{LR}^* \), we have

\[
q_{LR}^* = \frac{\rho R q R (S_R - q_R) - \rho L q L (S_L - q_L) + p_L - p_R - B_{LR}^2 + B_{SR}^2 + B_{LR}^2}{\rho R (S_R - q_R) - \rho L (S_L - q_L)}.
\]

(21)

Comparing Eq. (20) with (21), we have \(B_{LR}^* = B_{SR}^* \), which is true in a one dimensional problem. Similar to the previous treatment [14], we extend it to be the HLL middle state

\[
B_{LR}^* = B_{SR}^* HLL.
\]

(22)

The remaining variables can be calculated as follows:

\[
B_{ya}^* = B_{ya}^* - B_0,
\]

(26)

and the other variables can be derived from the Eq. (17):

\[
\rho_{\alpha}^* = \rho_{\alpha} S_{\alpha} - u_{\alpha} \alpha S_{\alpha} - q_{\alpha}^*.
\]

(27)

\[
(\rho u_{\alpha})_{\alpha}^* = \rho_{\alpha}^* q_{\alpha}^*.
\]

(28)

\[
(\rho u_{y})_{\alpha}^* = (\rho u_{y})_{\alpha} S_{\alpha} - u_{\alpha} \alpha S_{\alpha} - q_{\alpha}^* - \frac{B_{\alpha y}^* B_{\alpha x}^* - B_{\alpha x}^* B_{\alpha y}^*}{S_{\alpha} - q_{\alpha}^*},
\]

(29)

\[
(\rho u_{z})_{\alpha}^* = (\rho u_{z})_{\alpha} S_{\alpha} - u_{\alpha} \alpha S_{\alpha} - q_{\alpha}^* - \frac{B_{\alpha x}^* B_{\alpha z}^* - B_{\alpha z}^* B_{\alpha x}^*}{S_{\alpha} - q_{\alpha}^*},
\]

(30)

\[
e_{1\alpha}^* = e_{1\alpha} S_{\alpha} - u_{\alpha} \alpha S_{\alpha} - q_{\alpha}^* + \left(p_{1\alpha}^* q_{\alpha}^* - p_{1\alpha} u_{\alpha} \alpha \right) - \frac{[(B_1 \cdot B_0)^*] B_{1\alpha x}^* - (B_{1\alpha x} \cdot B_{1\alpha}^*) B_{1\alpha x}^*}{S_{\alpha} - q_{\alpha}^*} + \frac{[(B_1 \cdot B_0)^*] q_{\alpha}^* - \left((B_1 \cdot B_0)^* B_{1\alpha x}^* - (B_{1\alpha x} \cdot B_{1\alpha}^*) B_{1\alpha x}^* \right)}{S_{\alpha} - q_{\alpha}^*},
\]

(31)

where the external total pressure \(p_{1\alpha}^* \) is derived from the total pressure \(p^* \) in Eq. (25),

\[
p_{1\alpha}^* = \rho_{\alpha} (S_{\alpha} - u_{\alpha} \alpha) (q_{\alpha}^* - u_{\alpha} \alpha) + p_{1\alpha}^* - B_{\alpha x}^2 + B_{\alpha x}^2 + B_{0}^2 \cdot (B_{1\alpha x}^* - B_{1\alpha}^*)
\]

(32)

Note that the middle states \(B_{ya}^* \), \(B_{za}^* \), \((\rho u_{y})_{\alpha}^* \) and \((\rho u_{z})_{\alpha}^* \) are identical with the Eqs. (44)-(47) of the earlier paper [15] as long as \(B_{LR}^* = B_{SR}^* HLL = B_0 \), which is obviously true for the one dimensional problem. Here we relax the constraint on \(B_0 \), and allow the existence of the inequality \(B_{LR} \neq B_{SR} \). Obviously, the divergence free constraint is broken until the source term cleaning treatment is applied [18] at the end of each evolution.

Having thus solved the outer middle states \(U_{\alpha}^* \), we proceed to derive the inner middle states \(U_{\alpha}^{**} \). First, we need to know the speeds of the two Alfven waves

\[
S_{\alpha}^* = S_M \mp \frac{B_{\alpha x}^*}{\sqrt{\rho_{\alpha}^*}},
\]

(33)

where \(\mp \) corresponds to \(\alpha = L \) and \(R \), respectively. By applying the Rankine–Hugoniot relations across the Alfven waves \(S_{\alpha}^* \), we have
It is obvious that
\[\rho_{\alpha}^* = \rho_{\alpha}, \quad B_{1\alpha\alpha}^* = B_{1\alpha\alpha}. \]

However, as mentioned in the previous paper [15], it is not straightforward to solve for the other variables from the above equations. We then turn to the jump conditions across \(S_M \).

\[
S_M \begin{pmatrix} \rho^{**} \\ \rho^{**} \rho^{**} \\ \rho^{**} \rho^{**} \\ \rho^{**} \rho^{**} \\ B_{1x}^* \\ B_{1y}^* \\ B_{1z}^* \\ e_1^{**} \end{pmatrix}_L - \begin{pmatrix} \rho^* \\ \rho^* u_x^* \\ \rho^* u_y^* \\ \rho^* u_z^* \\ B_{1x}^* \\ B_{1y}^* \\ B_{1z}^* \\ e_1^* \end{pmatrix}_R = \begin{pmatrix} \rho^{**} u_x^{**} q^{**} + p^{**} - B_x^{**} \\ \rho^{**} u_y^{**} q^{**} - B_y^{**} \\ \rho^{**} u_z^{**} q^{**} - B_z^{**} \\ 0 \\ u_x^{**} B_y^{**} - u_y^{**} B_x^{**} \\ u_y^{**} B_z^{**} - u_z^{**} B_y^{**} \\ u_z^{**} B_x^{**} - u_x^{**} B_z^{**} \end{pmatrix}
\]

(35)

\[
S_M \begin{pmatrix} \rho^{**} \\ \rho^{**} \rho^{**} \\ \rho^{**} \rho^{**} \\ \rho^{**} \rho^{**} \\ B_{1x}^* \\ B_{1y}^* \\ B_{1z}^* \\ e_1^{**} \end{pmatrix}_L - \begin{pmatrix} \rho^* \\ \rho^* u_x^* \\ \rho^* u_y^* \\ \rho^* u_z^* \\ B_{1x}^* \\ B_{1y}^* \\ B_{1z}^* \\ e_1^* \end{pmatrix}_R = \begin{pmatrix} \rho^{**} u_x^{**} q^{**} + p^{**} - B_x^{**} \\ \rho^{**} u_y^{**} q^{**} - B_y^{**} \\ \rho^{**} u_z^{**} q^{**} - B_z^{**} \\ 0 \\ u_x^{**} B_y^{**} - u_y^{**} B_x^{**} \\ u_y^{**} B_z^{**} - u_z^{**} B_y^{**} \\ u_z^{**} B_x^{**} - u_x^{**} B_z^{**} \end{pmatrix}
\]

(36)

(37)

Combining with Eqs. (22) and (26), we assign them to be the values of the HLL average state,

\[
B_{1\alpha\alpha}^* = B_{1\alpha\alpha}^{HLL}, \quad B_{\alpha\alpha}^* = B_{\alpha\alpha}^{HLL}.
\]

(38)

If \(B_{1L}^{HLL} \neq 0 \), we have the following solutions

\[
u_{yL}^{**} = u_{yR}^{**}, \quad u_{zL}^{**} = u_{zR}^{**}, \quad B_{1yL}^{**} = B_{1yR}^{**}, \quad B_{1zL}^{**} = B_{1zR}^{**},
\]

(39)

which meet the jump conditions across the contact discontinuity. If \(B_{1L}^{HLL} = 0 \), the four middle states will reduce to the two middle states because of \(S_1^* = S_2^* = S_M \), which indicates that the current HLLD solver will downgrade to HLLC. Now we continue the case of \(B_{1L}^{HLL} \neq 0 \), and substitute Eqs. (33), (35) and (39) into the conservation laws over the Riemann fan,

\[(S_R - S_L)U_R^* + (S_R - S_M)U_M^* + (S_M - S_L)U_L^* + (S_L - S_R)U_R^* + S_R U_R + S_L U_L + F_R - F_L = 0, \]

(40)

which yields

\[
u_{yL}^{**} = u_{yR}^{**} = \frac{\sqrt{\rho_L^{**} u_{yL}^{**} + \sqrt{\rho_R^{**} u_{yR}^{**} + (B_{yR}^{**} - B_{yL}^{**}) \text{sign}(B_{yL}^{HLL})}}}{\sqrt{\rho_L^{**} + \rho_R^{**}}},
\]

(41)

\[
u_{zL}^{**} = u_{zR}^{**} = \frac{\sqrt{\rho_L^{**} u_{zL}^{**} + \sqrt{\rho_R^{**} u_{zR}^{**} + (B_{zR}^{**} - B_{zL}^{**}) \text{sign}(B_{zL}^{HLL})}}}{\sqrt{\rho_L^{**} + \rho_R^{**}}},
\]

(42)
\[
B_{1yL}^{**} = B_{1yR}^{**} = \frac{\sqrt{\rho_L^* B_{1yL}^*} + \sqrt{\rho_R^* B_{1yR}^*} + \sqrt{\rho_L^* \rho_R^* (u_{1yL}^* - u_{1yR}^*) \text{sign}(B_{xL}^{HLLD})}}{\sqrt{\rho_L^* + \rho_R^*}},
\]
\[
B_{1zL}^{**} = B_{1zR}^{**} = \frac{\sqrt{\rho_L^* B_{1zL}^*} + \sqrt{\rho_R^* B_{1zR}^*} + \sqrt{\rho_L^* \rho_R^* (u_{1zL}^* - u_{1zR}^*) \text{sign}(B_{xL}^{HLLD})}}{\sqrt{\rho_L^* + \rho_R^*}},
\]

where \(\text{sign}(B_{xL}^{HLLD})\) is the sign of \(B_{xL}^{HLLD}\). The above solutions satisfy the jump conditions defined in Eq. (34). Similarly, the energy density across \(S^*_L\) is resolved as
\[
e_{1zL}^{**} = e_{1zR}^{**} - e_{1zL}^{**} = \sqrt{\rho_{1z}^* (u_{1zL}^* - u_{1zR}^*)} \text{sign}(B_{xL}^{HLLD}),
\]
where \(\pm\) on the right side corresponds to \(\alpha = L\) and \(R\), respectively. Now that we have all four middle states, \(U_L^*, U_R^*, U_L^{**}\) and \(U_R^{**}\), the corresponding fluxes can be calculated as follows
\[
F_{HLLD} = \begin{cases}
F_L & \text{if } S_L > 0 \\
F_L^{**} = F_L + S_L (U_L^{**} - U_L) & \text{if } S_L \leq 0 < S_L^* \\
F_R^{**} = F_R + S_R (U_R^{**} - U_R) & \text{if } S_M \leq 0 < S_R^* \\
F_R & \text{if } S_R < 0
\end{cases}
\]

Note that the transition from the standard HLLD to the extended HLLD is straightforward since only the terms containing the internal field \(B_0\) are revised. If we set \(B_0 = 0\), the original HLLD solver is recovered. Therefore, the extended HLLD solver is fully backward compatible with the standard HLLD.

4. Numerical tests

4.1. One-dimensional Shock-tube problem

The one-dimensional shock-tube problem was first suggested by Brio and Wu [2], and later became a popular method to test numerical schemes. Here we follow their initial setting: \((\rho, u_x, u_y, \rho, B_x, B_y, B_z) = (1.0, 0.0, 1.0, 7.5, 1.0, 0.0)\) for \(-1 \leq x < 0\), and \((0.125, 0.0, 0.0, 0.1, 0.75, -1.0)\) for \(1 > x > 0\), with the adiabatic index \(\gamma = 2.0\). In order to test the robustness of the extended HLLD solver, we run two cases with different internal fields. For case 1 (C1), \((B_{0x}, B_{0y}, B_{0z})\) is set to zero, which means that no decomposition is applied, \(B = B_1\), and the extended HLLD solver is same as the standard HLLD. We then increase the internal field \((B_{0x}, B_{0y}, B_{0z})\) dramatically to be \((1.0 \times 10^3, 1.0 \times 10^3, 1.0 \times 10^5)\) for case 2 (C2), but keep the total field \(B\) to be same as C1. For comparison, the HLL solver is applied for case 3 (C3), with zero internal field. The MHD simulation evolves along the \(x\) direction only, with a total cell number of 800. The results at \(t = 0.1\) are shown in Fig. 3. From left to right, we can see a fast rarefaction wave and a slow compound wave moving to the left, a contact discontinuity, a slow shock and a fast rarefaction moving to the right. These results are same as those in the previous test [2]. Evidently, there is no noticeable difference between C1 and C2. In fact, if the internal field is weaker than in case C2, there is no apparent difference compared with C1 (not shown here). As expected, the HLL solver is more diffusive than the HLLD, which can be clearly identified in the bottom right panel which shows that the blue and green lines are sharper than the red one at the contact discontinuity. We must admit that unphysical oscillation will occur if the internal field is increased to extremely large values, e.g., \((1.0 \times 10^7, 1.0 \times 10^7, 1.0 \times 10^7)\) and above. This unexpected phenomenon is believed to be related to the unavoidable truncation error, and is present in the HLL solver as well.

4.2. Blast wave

We ran the three-dimensional simulation of blast wave to test the ability of the extended HLLD solver in cases of strong shocks and rarefactions [26]. The simulation domain is constrained to be \(-0.5 < x < 0.5, -0.75 < y < 0.75\) and \(-0.5 < z < 0.5\), with a grid size of \(200 \times 300 \times 200\). The rest initial state is: density \(\rho = 1\), pressure \(p = 0.1\), magnetic field \((B_x, B_y, B_z) = (1/\sqrt{2}, 1/\sqrt{2}, 0)\), and velocity \(\mathbf{v} = 0\), with the exception of a central region of radius 0.1, where the pressure is equal to 10. Three cases were simulated in this test, with three internal fields set to be \((0.0, 0.0, 3.0 \times 10^6, 3.0 \times 10^6, 3.0 \times 10^6)\), and \((3.0 \times 10^6, 3.0 \times 10^6, 3.0 \times 10^6)\), respectively. Fig. 4 shows the corresponding results at \(t = 0.2\). One can see that a circular blast wave propagates outward, and a rarefaction wave propagates inward. There is no apparent difference between C1 and C2. As for C3, the numerical noise appears to be caused by the unphysical oscillation, which is shown in the uneven green background. The results indicate that the extended HLLD solver can be successfully applied in the three dimensional numerical simulation if the value of \(|B|/|B_1|\) is much larger than \(\sim 10^{-6}\).

4.3. Magnetosphere

The Earth’s magnetosphere is a typical application for the extended HLLD solver because there is a strong internal magnetic field \(\mathbf{B}_0\) which can be described as a dipole, with a strength of \(3.12 \times 10^{-5}\) Tesla at the equator of the Earth. The
Fig. 3. A comparison between the three cases 1–3 at $t = 0.1$. The internal fields (B_{0x}, B_{0y}, B_{0z}) were set to: $C1 (0, 0, 0)$ (blue) and $C2 (1.0 \times 10^5, 1.0 \times 10^5, 1.0 \times 10^5)$ (green) for the HLL solver, and $C3 (0, 0, 0)$ (red) for the HLL solver. From the top to bottom, the panels present density ρ, pressure p, velocity components u_x and u_y, and magnetic field component B_y. The bottom right panel shows a local view of the ρ profile. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Cartesian coordinate system is defined to be centering at the Earth, with the x axis pointing toward the Sun. The z axis is along the north pole of the dipole field, and y is orthogonal to the above two axes. Here we have the following settings for the simulation: the interplanetary magnetic field is purely northward ($B_x, B_y, B_z)_{IMF} = (0, 0, 5)\text{nT}$; the solar wind velocity is along the negative x direction ($u_x, u_y, u_z) = (-400, 0, 0) \text{ km/s}$; the number density is 5 cm^{-3} and the temperature is $2.0 \times 10^5 \text{ K}$. The simulation domain spans $-300R_E < x < 300R_E$, and $-150R_E < y, z < 150R_E$. The grid size is $160 \times 162 \times 162$ in total, with a minimum grid spacing of $0.4R_E$ near the inner boundary (a sphere with a radius of $3R_E$). Four cases were run with different Riemann solvers (Rusanov, HLL, HLLC and HLLD), respectively, until they reached quasi-steady states after three hours evolution, as shown in Fig. 5. There is no apparent difference in the pressure distribution. The outermost magnetic field lines illustrate the approximate size of the magnetosphere in the meridional plane. It was verified that a more dissipative Riemann solver will result in more momentum transfer from the solar wind to the magnetosphere [27]. A shorter magnetotail is expected for a less dissipative solver, such as the HLLC or HLLD solver. As shown in the figure, the lengths of the magnetotail along the negative x direction are (A) $\sim 42R_E$, (B) $\sim 42R_E$, (C) $\sim 37R_E$, and (D) $\sim 37R_E$, respectively. This result indicates that the two advanced solvers, HLLC and HLLD, have higher accuracy than the Rusanov and HLL in resolving the magnetosphere.
5. Summary

We have extended the HLLD Riemann solver for MHD applications where the magnetic field \mathbf{B} can be decomposed into two parts, the static internal field \mathbf{B}_0 and the fluctuating external field \mathbf{B}_1, that is $\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_1$. This extended HLLD solver is backward compatible with the standard HLLD solver as long as the internal field $\mathbf{B}_0 \equiv 0$. Therefore, the extended solver inherits all the advantages of the standard HLLD solver. It has been verified that the extended HLLD solver works well for test applications, including the cases where the plasma β is very small and the internal field is much larger than the external one, e.g., the Earth's inner magnetosphere. Moreover, the HLLD solver can be used with the source term divergence.
cleaning method for the magnetic field. It is therefore expected that the extended HLLD solver can be applied to a wider range of MHD applications than the standard HLLD version.

Acknowledgements

This research was supported by the NNSFC grant 41674146, 41231067, 973 program 2012CB825602, and in part by the Specialized Research Fund for State Key Laboratories of China. The research of Vladimir Florinski was supported by NSF grant DMS-1361219. We thank Prof. Youqiu Hu for his careful reading and helpful suggestions.

References

