Contribution of ULF Wave Activity to the Global Recovery of the Outer Radiation Belt During the Passage of a High-Speed Solar Wind Stream Observed in September 2014

1State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China, 2Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, 3NASA Goddard Space Flight Center, Greenbelt, MD, USA, 4The Aerospace Corporation, Los Angeles, CA, USA, 5Space Science Laboratory, University of California, Berkeley, CA, USA, 6Laboratory for Atmospheric and Space Physics, Boulder, CO, USA, 7Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA, 8Mullard Space Science Laboratory, University College London, Dorking, UK, 9Department of Physics, National and Kapodistrian University of Athens, Zografos, Greece

Abstract Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how ultralow frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on 22 September 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground- and space-based observational data and global magnetohydrodynamic simulations and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. Magnetohydrodynamic simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfvén modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by phase space density calculations for this global recovery period.

1. Introduction

Outer radiation belt electrons trapped within the Earth’s magnetic field undergo a complex periodic motion that can vary adiabatically. The particle motion can be understood as a combination of gyromotion around the magnetic field lines, bounce motion wherein particles mirror back and forth between the magnetic mirror points, and an azimuthal drift at fixed L-shells (Northrop & Teller, 1960; Roederer, 1970; Shabansky, 1971; Ukhorsky & Sitnov, 2013). Due to the variety of electrodynamic processes in the magnetosphere, violations of the adiabatic invariants associated with each of the three motions can occur, causing electrons to be accelerated or scattered from the radiation belts that result in decreased fluxes (Baker et al., 1994; Baker & Kanekal, 2008; Blake et al., 1992). The population of the outer radiation belt electron flux may decrease (see Alves et al., 2016, and references therein) or increase (Artemyev et al., 2013; Baker et al., 2014; Bortnik & Thorne, 2007; Potapov, 2013; Thorne, 2010; Thorne et al., 2013; Turner et al., 2013), relative to background levels, according to the electromagnetic process involved, such as wave-particle interactions mediated by waves either in the ultralow frequency (ULF) range (a few millihertz up to about 5 Hz; Cahill & Winckler, 1992; Kivelson & Southwood, 1985; Mann et al., 1999) or in higher-
frequency ranges like the whistler mode chorus waves in the few hundreds of hertz to a few tens of kilohertz (Gurnett & O'Brien, 1964). This work investigates the role of ULF wave-driven radial diffusion mechanism on electron flux enhancement from 22 to 24 September 2014, when the Earth was under the influence of a high solar wind speed stream (HSS).

The Earth’s magnetosphere is embedded in the highly variable interplanetary extension of the outer layers of the solar atmosphere, the solar wind (Hundhausen, 1972, 1995). In situ observations of the solar wind plasma conditions and magnetic field show that during periods of low solar activity (solar minima) the slow solar wind (~350 km/s) is confined to the low-latitude regions of the Sun, while the fast solar wind (~600 km/s) is observed at higher latitudes (Krieger et al., 1973). During periods of high solar activity (solar maxima), the configuration of the solar magnetic field departs significantly from the quasi-dipolar configuration observed during solar minima. Therefore, the global structure of the solar wind changes, reflecting the structure of the solar atmosphere near the solar surface (Balogh et al., 1999). During solar maximum and the descending phase of solar activity the fast solar wind can extend to low latitudes. The coupling between the fast and slow wind results in the evolution of a corotating interaction region (Sheeley et al., 1976; Tsurutani et al., 2006). Superimposed on the global structure of the solar wind, transients are more frequently observed during solar maxima. Most of these transients are the interplanetary counterparts of coronal mass ejections (Echer et al., 2011; Gosling, 1990).

Coupling between the solar wind and the Earth’s magnetosphere depends on the global structure of the solar wind, including interplanetary coronal mass ejections. Previous studies have shown that there is a relationship between the properties of the solar wind during HSS and the dynamics of electron fluxes in the outer radiation belt (Hendry et al., 2012; MacDonald et al., 2010; Ogunjobi et al., 2017). Here we investigate the impact of the high-speed and low-density solar wind streams on the acceleration of high-energy electrons trapped in the outer radiation belt (e.g., Li et al., 2015). We point out that during the passage of the HSS a large amount of energy can be transferred to the magnetosphere (Baker et al., 1990, 1997; Paulikas & Blake, 1979; Potapov, 2013). The interplanetary magnetic field (IMF) components are analyzed to identify the degree to which Alfvénic fluctuations are present and to verify the possibility of initiating reconnection with the Earth’s magnetic field, which allows the solar wind energy to be transported into the magnetosphere. Additionally, we process the Van Allen Probes data and estimate numerically the effects of ULF wave power spectral density (PSD) on the outer radiation belt, highlighting the intensity, depth, and preferential polarization modes of the excited ULF waves. We estimate, through an empirical model (Ozeke et al., 2014), the ULF wave’s radial diffusion coefficient D_{LL} to quantify the contribution of these waves to the global recovery. Finally, phase space density (PhSD) is calculated as a function of the three adiabatic invariants that constrain the electron motion: μ, K, and L^* parameter (Roederer, 1970). Inspection of the radial gradient of PhSD versus L^* enables us to identify the main dynamic mechanisms, including the effects of inward radial diffusion driven by ULF waves during the global recovery of the outer belt electron fluxes.

2. Instrumentation

We employ Relativistic Electron-Proton Telescope (REPT; Baker et al., 2013) observations from Van Allen Probe A (Mauk et al., 2012) to study radiation belt electron intensities. The Magnetic Field Experiment (MAG) and Solar Wind Electron, Proton and Alpha Monitor (SWEPAM) on board the Advanced Composition Explorer (ACE) provides solar wind parameters at the L1 Lagrangian point (Stone et al., 1998).

The ULF wave PSD used in this study was calculated from the International Monitor for Auroral Geomagnetic Effects (IMAGE) ground magnetometer network (Viljanen & Hakkinen, 1997) and the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) (Kletzing et al., 2013) and Electric Field and Waves (EFW; Wygant et al., 2013) instruments on board the Van Allen Probes.

Figure 1 presents the conditions within the Earth’s radiation belt and solar wind from 10 to 25 September 2014. Particularly, the panels present the following: (a) REPT observations of the relativistic (2.10 MeV) omnidirectional (i.e., averaged over all 17 pitch angle bins) electron flux as a function of time and the L^* parameter, which is commonly referred to as Roederer L related to the third adiabatic invariant.
(Roederer, 1970); (b) REPT’s observations of the fluxes within its lowest four electron energy channels acquired at a fixed \(L^* \approx 5.3 R_E \); and the solar wind parameters observed at the L1 Lagrangian point, namely, (c) the solar wind speed \((V_p) \); (d) Interplanetary magnetic field (IMF) intensity \((B_t) \) and \(B_z \) component of the IMF; and (e) \(B_x \) component and \(B_y \) component of the IMF. The electron fluxes are obtained by the Relativistic Electron-Proton Telescope (REPT) instrument on board of the Van Allen Probes. The \(V_p \), \(B_t \), \(B_x \), and \(B_y \) are obtained by the Advanced Composition Explorer (ACE) satellite in the Lagrangian L1 point.

At the beginning of the period shown, particularly between 11 and 15 September, the Earth’s magnetosphere was embedded in a complex solar wind structure resulting from the interaction of a sequence of two interplanetary coronal mass ejections. The outer Van Allen radiation belt electron flux was severely depleted on 12 September (cf., e.g., Alves et al., 2016; Jaynes et al., 2015), followed by a 10-day-long quiescent period (see Ozeke et al., 2017). On early 19 September, the electron flux at the outskirts of the outer belt, that is, at \(L^* > 5.3 R_E \), was further diminished due to a corotating interaction region that reached the Earth’s magnetosphere. The solar wind speed (Figure 1c) increased in two steps, first reaching \(\sim 490 \) to \(\sim 500 \) km/s late on 19 September and maintaining such high values up to midday on 20 September, followed by a second enhancement in which the solar wind speed plateaued around \(\sim 550 \) km/s until around midday on 21 September, when it started to decrease back to typical values. During the first and second solar wind speed increases, Van Allen Probe A detected only minor relativistic electron flux changes, most notably in the lowest two REPT’s energy channels. It is only from 22 September onward that the outer belt electron flux increased significantly, within \(\sim 14 \) hr, as seen in Figures 1a and 1b). For this reason, this work will focus from this date. The flux change coincided with two IMF features: (i) a southward turning of the \(B_z \) component from an average \(B_z > 0 \) to an average \(B_z < 0 \) orientation and (ii) a sector boundary crossing with reversals in \(B_x \) and \(B_y \), as seen respectively in Figures 2c and 2d, which shows part of the time interval in Figure 1 with greater resolution. From 23 September onward, the three IMF components fluctuated greatly. Close inspection (Figures 2b and S1 in the supporting information) shows that such fluctuations are mostly Alfvénic in nature, and during this period the outer belt electron flux was further enhanced.
Alfvénic fluctuations in the solar wind are the signature of coronal plasma transported toward the Earth (Belcher & Davis, 1971; Cranmer & van Ballegooijen, 2005; Goldstein et al., 1995; Morton et al., 2015; Tu & Marsch, 1995). Low-frequency solar wind Alfvénic fluctuations (Lee et al., 2006; Zhang et al., 2014) that provide prolonged intervals of southward B_z (Gonzalez et al., 1994) can initiate reconnection on the Earth’s dayside magnetopause, which allows solar wind energy to enter the magnetosphere and drive moderate-intensity geomagnetic storms (Tsurutani et al., 1995) and recurrent substorms. The arrival of such solar wind structures can also generate a wide range of magnetospheric oscillation frequencies, among them, the ULF wave modes, which are recognized as efficient accelerators of the seed population particles responsible for the outer radiation belt global recovery (Summers et al., 2002; Horne & Thorne, 2003; Thorne et al., 2005; Elkington, 2006; Elkington et al., 1999; Summers & Ma, 2000; Perry et al., 2005, Ozeke et al., 2014 and others). James et al. (2013) performed a statistical analysis of 83 substorm events, and they showed that substorm activity can function as an internal (i.e., within the Earth’s magnetosphere) source of poloidal-mode (high-m) ULF waves. On the other hand, James et al. (2015) analyzed three individual substorm events and showed that the magnetospheric ULF waves can be driven by sources both internal and external to the magnetosphere. They suggested that the waves driven by energy sources external to the magnetosphere (e.g., Kelvin-Helmholtz instability on the magnetopause or solar wind buffeting) are often characterized by low azimuthal wave numbers (m) or large azimuthal scale sizes.

Inspection of Figure 2 during the global electron flux recovery event from 22 September onward shows that the solar wind features commonly associated with ULF wave generation in the magnetosphere, such as enhanced speeds and/or densities, are absent. During this period we only see a change in the heliospheric current sheet sector, which is accompanied by substorm activity (see AE index in Figure 2e and Pi2 activity in Figure S2 in the supporting information) and the presence of an on average southward IMF B_z (thick line on Figure 2c) and IMF Alfvénic fluctuations.
IMF observations on 22 September indicate the presence of Alfvénic fluctuations (Figure S1). The IMF B_z component was preferentially southward (Figures 1d and 2c), conducive to magnetospheric substorm activity (Figures 2e and S2). According to Jaynes et al. (2015), substorms were a crucial element for the injection of low-energy electrons in the outer radiation belt on this day. They suggested a scheme based on substorm injection and very low frequency (VLF) waves to explain the relativistic acceleration mechanism in the Earth’s magnetosphere. In their scheme, the source population (tens of keV) is injected via substorms, resulting in unstable particle distributions that in turn generate VLF waves. Interaction with these VLF waves energizes the seed populations to relativistic energies (hundreds of keV). Jaynes et al. (2015) noted the presence and possible importance of ULF waves during this interval but did not provide a full explanation of the role they play. We will investigate the effects/role/contribution of ULF wave-particle interactions during the enhancement of the high-energy electron flux in the outer radiation belt observed in this event. We then argue that for the global recovery event being analyzed here, the conjunction of IMF B_z and IMF Alfvénic fluctuations along with the presence of substorms play an important role in generating both the compressional and toroidal ULF wave modes.

4. ULF Waves Activity in the Magnetosphere

According to the description in section 3, the solar wind can drive ULF waves in the magnetosphere by two different general physical processes. First, ULF waves can be generated in the magnetosphere’s nightside sector during substorms triggered by long-period (>60 min) solar wind Alfvénic fluctuations (Rubtsov et al., 2018). This process can drive ULF waves in the magnetosphere with periods as short as 10 min. In the second mechanism, short-period (1–10 min) fluctuations of solar wind parameters (density, velocity, and dynamic pressure) can directly drive magnetospheric wave activity with similar periods, whether or not substorms occur (Kepko et al., 2002; Kepko & Spence, 2003). Herein we present evidence for the former mechanism, leaving the latter for future investigation.

The IMF conditions during the global recovery discussed above suggest that the magnetosphere was embedded in solar wind Alfvénic perturbations from 22 September onward (Figure S1 in the supporting information). To evaluate how the solar wind Alfvénic perturbations generated ULF waves during this event, we examined the ground and spacecraft ULF waves signatures that will be presented below in sections 4.1 and 4.2, respectively.

First, we identified the preferential polarization mode, since it is an important parameter for the wave-particle models used to simulate ULF wave-driven radial diffusion in the radiation belt (see, e.g., Fälthammar, 1965; Fei et al., 2006; Mann et al., 2016; Schulz & Lanzerotti, 1974; Shrirt et al., 2005; Su et al., 2015). Most of the different approaches used to derive ULF wave radial diffusion coefficients (e.g., Brautigam & Albert, 2000; Elkington, 2006; Ozeke et al., 2014) employ the mode of polarization as a main parameter. Each mode contributes differently to electron acceleration (Sarris et al., 2009). Dungey (1967) used the standing Alfvén wave mode (AWM) formalism to describe ULF wave polarization modes on geomagnetic field lines. In the toroidal mode, magnetospheric shells oscillate coherently with perturbations in the azimuthal direction associated with an induced electric field in the radial direction. In the poloidal mode, magnetic field oscillations are constrained to the meridional plane, associated with an induced electric field in the azimuthal direction (Dungey, 1967; Elkington, 2006; Kivelson & Russell, 1995). In the compressional mode, all of the parameters can vary, including the field-aligned component of the magnetic field, which changes the field magnitude and both the magnetic and plasma pressures (Kivelson & Russell, 1995).

4.1. ULF Waves Activity Observed by Ground Magnetometers

Figure 3 shows the ULF wave PSD calculated by a fast Fourier transform (FFT) using observations from the IMAGE ground-based magnetometer network from 22 to 24 September. The instrument’s signal was filtered using a Butterworth band-pass filter, which only allows the passage of signals within the Pc5 band (1–10 mHz). For the calculation of the power spectrum, we used the short-time FFT with a moving Hamming window of 180 min. Note that ULF wave PSD and its spatial extent gradually increased throughout this interval, that is, ULF waves reached the lowest magnetospheric L-shells at the end of the period on 24 September. At 2:00 UT on 22 September, the network observed ULF PSD mostly confined to L-shells greater than 6 R_E. At 10:00 UT, the network also observes an isolated period of ULF PSD activity in the dawnside sector that reached $L \sim 3 R_E$. After that, on 23 September the network detected significant...
ULF PSD in the dusk (16–19 magnetic local time [MLT]) and nightside (21–24 MLT) quadrants. Finally, at 0:00–6:00 UT and 20:00–24:00 UT on 24 September, the network observed a considerable increase in ULF PSD that penetrated inward of $L \sim 3.5$ R_E.

From 22 to 24 September, the relativistic outer radiation belt electron fluxes (see Figures 1a and 1b) increased concurrent with the gradual enhancement in ULF PSD (Figure 3). Also, the electron flux increase reached deeper ($L \sim 4.5$ R_E) magnetospheric L-shells, similar to the ULF wave behavior. The outer radiation belt electron flux recovered on 24 September, so we choose to investigate the ULF wave activity during this day in greater detail. Figure 4 shows the PSD from 12:00 UT on 23 September to 12:00 UT on 24 September. The intense ULF wave activity persists for 12 hr, reaching $L \sim 3.5$ R_E.

During the 3 days analyzed (i.e., from 22 to 24 September), the ULF PSD increases preferentially in the nightside sector. This asymmetry in magnetospheric ULF wave activity can be understood by considering the IMF conditions during 24 September (Figures 1c–1e). The IMF conditions suggest enhanced reconnection/substorm activity in the magnetotail, which is confirmed by the maintenance of intense auroral activity (AE index $\sim 1,200$ nT; Figure 2e) and by the signature of Pi2 activity (Figure S2 in the supporting information). Previous work (Shiokawa et al., 2005; Wang et al., 2015) associates Pi2 signatures with Alfvénic IMF fluctuations (see Figure S1 in the supporting information). We suggest that the substorms and magnetotail reconnection play an important role in the generation and maintenance of the ULF waves.

4.2. ULF Wave Activity Observed by Spacecraft Magnetometers

We applied a Butterworth band-pass filter to the EMFISIS magnetic field and EFW electric field measurements. The ULF wave modes are characterized as fast (compressional), poloidal, and toroidal

Figure 3. International Monitor for Auroral Geomagnetic Effects (IMAGE) network’s ultralow-frequency (ULF) power spectral density in the 1- to 10-mHz frequency range (color scale) as a function of L-shell and time (UT = universal time and MLT = magnetic local time) from 22 to 24 September 2014.

Figure 4. International Monitor for Auroral Geomagnetic Effects (IMAGE) network’s ultralow-frequency (ULF) power spectral density in the 1- to 10-mHz frequency range (color scale) as a function of L-shell and time (UT = universal time and MLT = magnetic local time) between 12 noon on 23 September and 12 noon on 24 September 2014. Interval between dashed red lines represent the period of the Van Allen Probes orbit.
according to the predominant PSD component, that is, magnetic parallel ($B_||$), electric azimuthal (E_ϕ), and electric radial (E_r), respectively. To identify the polarization modes of the ULF waves, we rotate the electric and magnetic field vectors into the field-aligned coordinate system as follows: consider a location $s=(x, y, z)$ in space where there is a local magnetic field vector B, the parallel ($||$) direction is represented by $b = B/|B|$, the azimuthal (ϕ) direction is given by the cross product between b and the unitary position vector $s/|s|$, and the radial (r) direction completes the orthonormal system being positive radially outward.

Figures 5–7 present the results for the ULF waves measured by EMFISIS/EFW on 22–24 September, respectively. Each figure has six panels that show the ULF PSD calculated for the $B_||$ (a, d), E_ϕ (b, e), and E_r (c, f) components during the two of the three Van Allen Probes orbits. Comparing the PSD seen in panels (b) and (c) ((e) and (f)) of Figures 5–7, one sees that the toroidal mode dominates over the poloidal one during the whole analyzed period but most prominently on 22 September. Furthermore, panels (a) and (d), and (c) and (f) show that both the compressional and Alfvénic waves activity increased from 22 to 24 September. This observation is in agreement with the ground-based data (see Figures 3 and 4).

On 23 and 24 September, Van Allen Probe A moved along its orbit from the nightside to the dawnside (2–7 MLT), where the spacecraft detected a substantial ULF PSD in the compressional and Alfvénic modes. By contrast, data from the IMAGE ground network (Figure 4) show intense ULF waves activity between 21:30 MLT on 23 September and 4:15 MLT on 24 September 24; that is, the MLT sector observed by the satellite covers a region where ULF waves activity is weak, except at 3:30 MLT. Thus, we simulate this event using a global magnetohydrodynamic (MHD) model (see Gombosi et al., 2004; Tóth et al., 2005; Tóth et al., 2012) to analyze the preferential ULF wave mode in the other magnetospheric MLT sectors, including those where the PSD is higher as seen by ground magnetometers.
ULF Wave Activity as Calculated by the SWMF/BATS-R-US MHD Model

ACE observations from 22 to 24 September were used as the initial/boundary condition to model the solar wind’s contribution to ULF wave activity within the magnetosphere. Electromagnetic field oscillations in the inner magnetosphere were estimated by the Space Weather Modeling Framework/Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme (SWMF/BATS-R-US) global MHD model (De Zeeuw et al., 2004; Gombosi et al., 2004; Powell et al., 1999; Ridley & Liemohn, 2002; Tóth et al., 2005; Tóth et al., 2012 and Wolf et al., 1977) developed at the University of Michigan in the Center for Space Environment Modeling.

The SWMF couples the different physical domains in a self-consistent mode (Tóth et al., 2012). Here we use three SWMF modules, namely, the Global Magnetosphere, Inner Magnetosphere, and Ionospheric Electrodynamics (see Alves et al., 2017). We chose a higher grid resolution of 1/8 RE in a box surrounding the Earth with dimensions: $-7 \leq x \leq 7$, $-7 \leq y \leq 7$, and $-3 \leq z \leq 3$ RE (inner boundary = ~2.5 RE). These dimensions encompass the Van Allen belts region; thus, one can resolve electric and magnetic field fluctuations in the ULF range in this region. The MHD simulation provides a global-scale ULF PSD evaluation, including within the inner magnetosphere.

Figures 8 and 9 present the ULF PSD obtained as a result of the MHD simulation for 22 and 24 September, respectively. Figures 8 and 9 were produced in the following manner. At a given MLT, and at a given radial distance R, three time series corresponding to the modeled magnetic field B_\parallel component, and the modeled electric field components E_ϕ and E_r were obtained. These time series were acquired at $dR = 0.12$ RE steps for each given MLT. The FFT, following Claudepierre et al. (2008), has been performed on these modeled time series, with each one spanning 24 hr of simulated time. They had a sampling rate of 1/30–33.3 mHz. The global recovery of the outer radiation belt starts on 22 September (Figures 1a, 1b, and 2a). The frequency range

Figure 6. The ultralow-frequency power spectral density (color scale) as a function of frequency (vertical axis) and spacecraft’s radial distance (horizontal axis) on 23 September 2014. Data from both the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) and Electric Field and Waves (EFW) instruments on board Van Allen Probe A were used. (a–c) The first orbit and (d–f) the second orbit. The (a, d) parallel magnetic component (B_\parallel), (b, e) azimuthal electric component (E_ϕ), and (c, f) radial electric component (E_r).
investigated by the simulation extends to 16.65 mHz, while the radial distance ranges from 3 to 15 RE. Since the outer radiation belt region is typically located from the 3 to 6 RE range, our figures and analysis are restricted to this region.

To evaluate the model reliability, we show (Figures 8d–8f and 9d–9f) the ULF wave PSD at 6 MLT for comparison with the wave activity observed by the Van Allen Probes (Figures 5a–5f and 7a–7f) at 2–7 MLT. As shown in Figures 8d and 9d, the simulation indicates enhanced compressional mode (B_\parallel) PSD throughout the period shown. The amplitude of the toroidal mode (E_ϕ) shown in Figure 8f predominates over that of the poloidal mode (E_r, Figure 8e) on 22 September. Figures 9e and 9f present simulations for the poloidal and toroidal modes, respectively, on 24 September. For this period, there is no clear predominance of the toroidal mode over the poloidal mode, although near ~6 RE, we can see a slight increase of the PSD in the toroidal mode when compared with the poloidal mode. The modeling results agree with Van Allen Probe A observations (see Figures 5 and 7) at 02:00 to 07:00 MLT, suggesting that the model also reasonably reproduces the PSD of the ULF waves at other MLTs.

The IMF B_x and B_y (Figure 2b) variations indicate a sector boundary crossing at 02:24 UT on 22 September, right after ACE observes very small Alfvénic fluctuations (Figures 1d, 1e, 2c, and 2d) that did not produce AWM in the dayside magnetosphere (see results in Figures 10h and 10i). Solar wind Alfvénic fluctuations increased from 23 until 24 September, ultimately resulting in magnetotail disturbances (e.g., the ground-based observations of Pi2 shown in Figure S2 of the supporting information). Disturbances like these may enhance both magnetosonic waves and AWM (Murphy et al., 2011). And in fact, on September 24 the ground-based magnetometers in the nightside sector observe a huge increase in the compressional mode (E_r, Figure 9a) with a PSD peak at ~5 RE. The compressional mode also increases in the dawn and dusk sectors (Figures 9d and 9j). In addition, AWM perturbations are observed at dawn and dusk MLTs (Figures 11e, 11f, 11k, and 11l), midnight sector (Figures 11b and 11c), and even to a more limited degree in the dayside sector (Figures 11h and 11i).
Figure 8. The ULF power spectral density (color scale) as a function of frequency (vertical axis) and radial distance (horizontal axis) simulated by the SWMF/BATS-R-US/RCM model on 22 September 2014. From top to bottom, (a–c) 00:00 MLT—midnight, (d–f) 06:00 MLT—dawnside, (g–i) 12:00 MLT—noon, and (j–l) 18:00 MLT—duskside. The (a, d, g, j) parallel magnetic component (B_\parallel), (b, e, h, k) azimuthal electric component (E_φ), and (c, f, i, l) radial electric component (E_r). ULF = ultralow frequency; MLT = magnetic local time; SWMF/BATS-R-US/RCM = Space Weather Modeling Framework/Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme/Rice Convection Model.
Figure 9. The ULF power spectral density (color scale) as a function of frequency (vertical axis) and radial distance (horizontal axis) simulated by the SWMF/BATS-R-US/RCM model on 24 September 2014. From top to bottom, (a–c) 00:00 MLT—midnight, (d–f) 06:00 MLT—dawnside, (g–i) 12:00 MLT—noon, and (j–l) 18:00 MLT—duskside. The (a, d, g, j) parallel magnetic component (B_\parallel), (b, e, h, k) azimuthal electric component (E_ϕ), and (c, f, i, l) radial electric component (E_r) are showed in the first, second and third column, respectively. ULF = ultralow frequency; MLT = magnetic local time; SWMF/BATS-R-US/RCM = Space Weather Modeling Framework/Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme/Rice Convection Model.
Figure 10. (top) International Monitor for Auroral Geomagnetic Effects (IMAGE) network’s ultralow-frequency (ULF) power spectral density in the 1- to 10-mHz frequency range (color scale) as a function of L-shell and time from 21 to 25 September 2014. (bottom) Radial diffusion coefficient D_{LL} (color scale) as a function of L-shell (vertical axis—left) and time (horizontal axis) from 21 to 25 September 2014, estimated from the Kp index (vertical axis—right) data from the OMNI database with the help of the analytic expression derived by Ozeke et al. (2014). UT = universal time.

Figure 11. Time evolution of phase space density radial profiles at fixed first (μ) and second (K) adiabatic invariants for both (a) outbound and (b) inbound parts of the Radiation Belt Storm Probes (RBSP)-A orbit. The legends show the start day and time (in the dd/hh:mm format) of either the outbound or inbound portions of RBSP-A.
5. ULF Wave-Particle Interaction

The dynamic mechanisms that energize seed electrons to relativistic energies have been extensively studied (e.g., Horne & Thorne, 2003; Baker et al., 2014; Foster et al., 2014). Nevertheless, the role of ULF waves in the acceleration processes is still not well understood. Energization may occur in conjunction with inward radial diffusion driven by drift resonant interactions, as pointed out by many authors (see, e.g., Elkington, 2006; Perry et al., 2005; Ukhorskiy et al., 2009). It is important to note that polarization modes can affect the efficiency of wave-particle interactions. Interactions with wave electric fields in the azimuthal direction resulting in poloidal modes are likely to be more effective to radiation belt dynamics than are interactions relying on the radial component of the electric field (Elkington, 2006).

Simulations of the drift-resonant interactions carried out by Elkington et al. (2003) and Ukhorskiy et al. (2005) show that the poloidal polarization mode is more efficient for electron acceleration than is the toroidal mode. This is because the largest component of a drifting electron’s motion is in the azimuthal direction, which corresponds to the direction of the electric field in poloidal ULF pulsations.

The azimuthal particle drift motion resonantly interacts with the poloidal wave electric field when

$$\omega = m \omega_d$$ \hspace{1cm} (1)

where ω is the wave frequency, m is the azimuthal wavenumber, and ω_d is the particle drift frequency. The distribution function of particles undergoing stochastic motion in an L-shell should satisfy the radial diffusion equation

$$\frac{df}{dt} = L^2 \frac{\partial}{\partial L} \left[D_{LL} \frac{\partial f}{\partial L} \right] - \frac{f}{\tau}$$ \hspace{1cm} (2)

where f is the PhSD of electrons, and it is assumed that the first and second adiabatic invariants are conserved (Schulz & Lanzerotti, 1974). The radial diffusion coefficient and the electron lifetime are represented by D_{LL} and τ, respectively. The analytic form of the radial diffusion coefficient D_{LL} may be derived from the Hamiltonian formulation (Brizard & Chan, 2001; Fei et al., 2006). D_{LL} is the sum of the diffusion coefficient due to uncorrelated azimuthal electric field (poloidal mode) and the compressional magnetic field (fast mode) perturbations, D^E_{LL} and D^B_{LL}, respectively (Ozeke et al., 2012), that can be expressed as follows

$$D_{LL} = D^E_{LL} + D^B_{LL}$$ \hspace{1cm} (3)

$$D^E_{LL} = \frac{1}{8B_E^2R_E^2} L^6 \sum m^2 p^E_m(m \omega_d)$$ \hspace{1cm} (4)

$$D^B_{LL} = \frac{M^2}{8q^2\gamma^2B_E^2R_E^2} L^4 \sum m^2 p^B_m(m \omega_d)$$ \hspace{1cm} (5)

where M and γ represent the first adiabatic invariant and the relativistic correction factor, given, respectively, by

$$M = \frac{p^E_1 L^3}{2mB_E}$$ \hspace{1cm} (6)

$$\gamma = \left(1 - v^2/c^2\right)^{-1/2}$$ \hspace{1cm} (7)

The constants B_E, R_E, and q represent the equatorial magnetic field strength at the surface of the Earth, the Earth’s radius, and the electron charge, respectively. The total speed of the electron is represented by v and the speed of light by c. The terms $p^E_m(m \omega_d)$ and $p^B_m(m \omega_d)$ represent the PSD of the electric and magnetic perturbations with azimuthal wave number, at the wave frequency, which satisfy the drift resonance condition.

5.1. ULF Wave-Driven Radiation Belt Radial Diffusion Coefficient

Radial diffusion can explain the high-energy electron flux increases in the radiation belt (Friedel et al., 2002; Li et al., 2001). Irregular fluctuations of magnetospheric electromagnetic fields on the timescales of the bounce-averaged drift period of energetic particles violate the particles’ third adiabatic invariant and cause
random radial motion. An electron that moves to a lower L-shell and correspondently to a stronger magnetic field gains energy (due to conserving the transverse adiabatic invariant). Such the stochastic radial diffusion in the electrons’ L-shell can increase particle flux at a given location and energy, depending on the initial distribution of particle properties and the existence of particle sources in the magnetosphere (see, e.g., Friedel et al., 2002; Li et al., 2001; Sarris et al., 2006).

The efficiency of drift-resonant ULF wave-particle interactions can be estimated employing an empirical model for the radial diffusion coefficient D_{LL} (see, e.g., Brautigam & Albert, 2000; Elkington et al., 2003; Ozeki et al., 2014). The model derived from equations 4 and 5 of Ozeki et al. (2014) describes the radial diffusion coefficients as a function of the geomagnetic index Kp and L-shell, but independent of the wave energy and m number:

$$D_{LL}^B = 6.22 \times 10^{-13} L^{9.8} 10^{-0.037L^2 + 0.625L - 0.0108K_p^2 + 0.999K_p}$$

(8)

$$D_{LL}^E = 2.16 \times 10^{-8} L^{6} 10^{0.217 + 0.461K_p}$$

(9)

These coefficients describe the acceleration of the electrons more efficiently than those of other empirical models because Ozeki et al. (2014) assume that all of the wave m values are positive (eastward propagating waves). Under symmetric drift resonance only positive wave (m values) can contribute to resonant interactions. Also, for frequencies above 8 mHz their assumption that the PSD at each wave m value varies as α^m may no longer be valid. To satisfy the drift resonance condition in this situation, the wave must have an m value ≥ 10 or the electrons must have energies ≥ 5 MeV.

To evaluate the ability of the ULF wave-particle interactions to produce the electron variations observed during the global recovery of the outer belt from 21 to 24 September 2014), we calculate the radial diffusion coefficient D_{LL} using equations (8) and (9). When analyzing this event, Jaynes et al. (2015) noted the important role that ULF waves could have played in the electron acceleration to multi-MeV energies. However, they did not evaluate the significance of the ULF waves. Thus, we employed observations and simulations to analyze ULF wave activity. We obtained the Kp index from both the OMNI database (King & Papitashvili, 2005) and BATS-R-US modeling. Figure 10 shows the gradual increase of ULF wave activity concurrent with that of the Kp index and corresponding D_{LL} coefficient enhancements. The red dashed line indicates the beginning of the global recovery of the outer radiation belt at several energy levels. The ULF wave PSD was calculated using observations from the IMAGE network (Figure 10, top), and D_{LL} was calculated using equations (3), (8), and (9). Figure S4 in the supporting information, shows the Kp index obtained from BATS-R-US modeling of D_{LL}, which agrees with the D_{LL} obtained from the ground-based database (Figure S3 in the supporting information).

The time evolution of D_{LL} throughout the repopulation period indicates the ability of ULF waves to fill several L-shells (L-shell $\sim 5.5 R_E$ on 22 September and L-shell $\sim 3.5 R_E$ on 24 September) in the outer radiation belt. An increase in the ULF waves PSD, Kp index, and also the D_{LL} radial diffusion coefficient coincided with the IMF sector boundary crossing, as indicated by the red dashed line in Figure 10. Furthermore, we observe enhancement of both D_{LL} and ULF waves in the heart of the outer radiation belt (L-shell $\sim 3.5 R_E$) when the Kp index reaches its maximum value for the period, that is, 4. In accordance with this, the outer radiation belt electron flux observed from the time when the sector boundary crossing was detected at L1 (Figures 1e and 2c) gradually increases at several L-shells (L-shell $\sim 5.5 R_E$ on 22 September and L-shell $\sim 3.5 R_E$ on 24 September).

The analytic electric field diffusion coefficient in equation (3) is more significant than is the magnetic field diffusion coefficient. Additionally, the observational and modeling results presented in section 4 show that toroidal and compressional ULF modes predominate during this event. However, a minor increase in the ULF waves in poloidal mode found in the simulation at 00:00 and 18:00 MLT contributed to the increase of D_{LL}.

6. PhSD Radial Profile

The analysis presented in the previous sections suggests that the PhSD is crucial for further understanding the role of the ULF waves on the global recovery of the relativistic electron flux observed in this radiation
belt enhancement event. PhSD is calculated as a function of quantities that are conserved under specific circumstances, for example, the three adiabatic invariants that constrain the electron motion: μ, K, and L^* parameter (Roederer, 1970). Time-dependent PhSD radial profiles as a function of L^* for fixed μ and K at regions within geosynchronous orbit can provide useful information.

PhSD data for Radiation Belt Storm Probes (RBSP)-A were obtained directly from https://www.rbsp-ect.lanl.gov/data_pub/PSD/. We use values of $\mu = 2291$ MeV/G and $K = 0.1145$ G $1/2 R_E$ because they optimize the coverage of L^* while limiting the equatorial PhSD to approximately 45–90° pitch angle range (see Reeves et al., 2013; Souza et al., 2017). It is important to highlight that the higher μ value chosen corresponds to electrons at energies $\gtrsim 1.5$ MeV, at which the increase in the outer belt flux is observed.

Figure 11 presents the time evolution of PhSD radial profiles at fixed first (μ) and second (K) adiabatic invariants for both (a) outbound and (b) inbound parts of the RBSP-A orbit. The legends in Figure 11 show the start day and time (in the dd/hh:mm format) of either the outbound or inbound portions of RBSP-A.

The time evolution of the radial PhSD profile in the outbound regions of the Van Allen Probe A orbit shows that the gradients are almost always positive except on 25 September at 02:19 UT from $L^* 5 R_E$. In spite of the local peak that occurs later on during the analyzed period, we should point out another feature regarding the time evolution of the PhSD profiles that supports the idea that inward radial diffusion might be playing an important role on the electron flux recovery. Inspecting either the outbound or inbound portions of the RBSP-A orbits, particularly in the $L^* \sim 4.3$ to 5 range, one notices that as time goes by, the PhSD at fixed μ and K increases by approximately 0.5 to 1 orders of magnitude. In this L^* range the PhSD gradients are markedly positive, with no clear evidence of localized peaks, except for the 11:48 UT 24 September inbound profile, which shows a very localized ($L^* \sim 5 + 0.2$) change in the PhSD gradient sign, possibly related to spatially localized whistler mode chorus waves activity at that time (see, e.g., Jaynes et al., 2015, Figure 8). Overall, the PhSD profiles appear to undergo a shift toward lower L^* values, at least within the period of interest, which goes from the early morning hours of 22 September up to the late hours of 24 September. This shift of the PhSD profiles is characteristic of inward radial diffusion. The inbound portions of the Van Allen Probe A orbits exhibit positive gradients only until 23 September. Peaks located in the PhSD between $L^* 4.5$ and 5 R_E are observed for all times on 24 September. The analysis of the time evolution of the radial PhSD profiles during both outbound and inbound portions of Van Allen Probe A suggests that there are at least two mechanisms for electron acceleration in the outer radiation belt for this event, as indicated in the supporting information (Figures S5–S13), which show the PhSD at different values of μ. The first, due to radial diffusion, can occur through the interaction of ULF waves and particles, as studied in this work. The second, due to local acceleration, which may occur from the interaction of VLF waves and particles, confirms the analysis of this event performed by Jaynes et al. (2015) and discussed in section 3. In fact, Chen et al. (2007) and others show that peaks in the PhSD approximately at $L^* 5.5 R_E$ is an indication that local acceleration may be the dominant mechanism in the repopulation of relativistic electron flux.

7. Concluding Remarks

This paper analyzed the relativistic electron flux increases generated by ULF wave-driven drift resonances during the 22–24 September 2014 period. The global flux recovery followed a ~10-day period in which the outer Van Allen belt was in quiescent state wherein fluxes of relativistic electrons were particularly low (see, e.g., Alves et al., 2016; Jaynes et al., 2015; Ozeke et al., 2017). The arrival at Earth of a high-speed stream early on 19 September preceded the electron flux enhancement. During the global electron flux recovery, both Alfvénic fluctuations in the three components of the IMF and a southward turning of the average IMF B_Z component contributed to provide energy input to the Earth’s inner magnetosphere via dayside reconnection, which in turn may drive enhanced substorm activity (see, e.g., Gonzalez et al., 1994). Also, it has been shown in the literature that substorm activity may induce ULF wave generation (see, e.g., James et al., 2013, 2015). While James et al. (2013) suggest that ULF waves can be driven by energy sources internal to the magnetosphere, James et al. (2015) suggest that the ULF waves can be driven by energy sources coming from both internal and external to the magnetosphere. According to James et al. (2015), the external sources can be Kelvin-Helmholtz instability on the magnetopause or solar wind buffeting. Our analysis suggests that the ULF waves observed when outer belt fluxes increased may have participated in electron acceleration via enhanced radial diffusion mechanism, as confirmed through the PhSD. The radial diffusion coefficients
(DiL) obtained from the empirical model using both the observed and simulated Kp index show a gradual increase as a function of time, simultaneous to flux recovery. Also, their enhancement reached low L-shells. Since the electric azimuthal component is predominant in the DiL coefficient, we concluded that the resonant wave-particle interaction by low-intensity poloidal wave mode detected by Van Allen Probes contributed to the repopulation of the outer radiation belt.

References

