磁层顶边界区剪切流MHD不稳定性的非线性演化 | |
Alternative Title | NONLINEAR EVOLUTION OF MHD INSTABILITY CAUSED BY THE SHEAR FLOW AT THE MAGNETOPASUE BOUNDARY |
张效信; 王迺权; 北京8701信箱 | |
Department | 空间天气学国家重点实验室 |
Source Publication | 地球物理学报
![]() |
1993 | |
Volume | 36Issue:1Pages:1-8 |
ISSN | 0001-5733 |
Language | 中文 |
Keyword | K-h不稳定性 非线性演化 混沌吸引子 |
Abstract | 本文利用MHD二维不可压模式,研究了地球磁层顶边界区剪切流引起的Kelvin-Helmholtz(K-H)不稳定性问题,得到了一个新的非线性微分方程组.理论和数值分析表明:该问题的非线性演化对初值非常敏感,而且在雷诺数和磁雷诺数给定的条件下,Alfven马赫数(M_A)对K-H不稳定性的非线性演化起决定性作用.这组方程蕴含几个吸引子,如不动点,极限环和奇异吸引子等,这体现了磁层顶非线性系统的复杂性.文中还发现背景磁场在磁层顶K-H不稳定性的非线性演化过程中起很重要的作用. |
Other Abstract | A model of two-dimensional incompressibl MHD is studied in an effort to understand the nature of the nonlinear evolution of Kelvin-Helmholtz instability in the presence of shear flow fields at the magnetopause boundary layer. A new set of nonlinear differential equa-tions for describing the model has been derived by using truncated Fourier expansions.Their numerical solutions are examined, and trajected in phase space. It is found that slightly differing initial conditions can be evolve into considerable different states,and Alfv~n Mach number Ma plays a 1eading role in the nonlinear evolurion of the ~stem.It is also found that the nonlinear system can exhibit a wealth of characteristic dynamical behaviors including steadv state,Hopf bifurcation to periodic orbits,perio doubling bifurcations,chaotic solution (strange attractor),bifurcation from chaos to period solution and steady solution,and that compared to the intensity of the flow.the fluid becomes m)re stable if a strong or a weak magmetlc field parallel to the flow. |
Funding Project | 中国科学院空间科学与应用研究中心 |
Document Type | 期刊论文 |
Identifier | http://ir.nssc.ac.cn/handle/122/1177 |
Collection | 空间科学部 |
Corresponding Author | 北京8701信箱 |
Recommended Citation GB/T 7714 | 张效信,王迺权,北京8701信箱. 磁层顶边界区剪切流MHD不稳定性的非线性演化[J]. 地球物理学报,1993,36(1):1-8. |
APA | 张效信,王迺权,&北京8701信箱.(1993).磁层顶边界区剪切流MHD不稳定性的非线性演化.地球物理学报,36(1),1-8. |
MLA | 张效信,et al."磁层顶边界区剪切流MHD不稳定性的非线性演化".地球物理学报 36.1(1993):1-8. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
19933611.pdf(216KB) | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment