NSSC OpenIR  > 空间科学部
Alternative TitleGlobal Well-Posedness of Soluitions to the Initial Value Problem for a Coupled Nonlinear Model of Wave Interaction
冯学尚; 王连圭; 北京8701信箱
Source Publication吉首大学学报(自然科学版)
Keyword耦合非线性波模型 Banach不动点原理 全局适定性
Other AbstractHere is established the global well -posedness of solutions in Hs (R)XHs(R), S≥1 of the intial value problem for a coupled nonlinear model describing the interaction of two dispersive waves. The main idea comes from Kato s theory for nonlinear hyperbolic equations and results of singular integrals, which permits us ta use Banach s fixed point principle. The key point is the setup of the global a priori estimates for the solutions, which plays an important role in the derivation of global results. The present paper is a reversion of the author' s former report.
Funding Project中国科学院空间科学与应用研究中心
Document Type期刊论文
Corresponding Author北京8701信箱
Recommended Citation
GB/T 7714
冯学尚,王连圭,北京8701信箱. 一类耦合非线性波相互作用模型初值问题解的全局适定性[J]. 吉首大学学报(自然科学版),1996,17(1):8-15.
APA 冯学尚,王连圭,&北京8701信箱.(1996).一类耦合非线性波相互作用模型初值问题解的全局适定性.吉首大学学报(自然科学版),17(1),8-15.
MLA 冯学尚,et al."一类耦合非线性波相互作用模型初值问题解的全局适定性".吉首大学学报(自然科学版) 17.1(1996):8-15.
Files in This Item: Download All
File Name/Size DocType Version Access License
19961718.pdf(168KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[冯学尚]'s Articles
[王连圭]'s Articles
[北京8701信箱]'s Articles
Baidu academic
Similar articles in Baidu academic
[冯学尚]'s Articles
[王连圭]'s Articles
[北京8701信箱]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[冯学尚]'s Articles
[王连圭]'s Articles
[北京8701信箱]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 19961718.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.