NSSC OpenIR  > 空间环境部
An introduction to the FY3 GNOS instrument and mountain-top tests
Bai, W. H.; Sun, Y. Q.; Du, Q. F.; Yang, G. L.; Yang, Z. D.; Zhang, P.; Bi, Y. M.; Wang, X. Y.; Cheng, C.; Han, Y.; Bai, WH (reprint author), Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing, Peoples R China.
Department空间环境部
Source PublicationATMOSPHERIC MEASUREMENT TECHNIQUES
2014
Volume7Issue:6Pages:1817-1823
ISSN1867-1381
Language英语
AbstractThe FY3 (Feng-Yun-3) GNOS (GNSS Occultation Sounder) mission is a GNSS (Global Navigation Satellite System) radio occultation mission of China for remote sensing of Earth's neutral atmosphere and the ionosphere. GNOS will use both the global positioning system (GPS) and the Beidou navigation satellite systems on the China Feng-Yun-3 (FY3) series satellites. The first FY3-C was launched at 03:07 UTC on 23 September 2013. GNOS was developed by the Center for Space Science and Applied Research, Chinese Academy of Sciences (CSSAR). It will provide vertical profiles of atmospheric temperature, pressure, and humidity, as well as ionospheric electron density profiles on a global basis. These data will be used for numerical weather prediction, climate research, and ionospheric research and space weather. This paper describes the FY3 GNOS mission and the GNOS instrument characteristics. It presents simulation results of the number and distribution of GNOS occultation events with the regional Beidou constellation and the full GPS constellation, under the limitation of the GNOS instrument occultation channel number. This paper presents the instrument performance as derived from analysis of measurement data in laboratory and mountain-based occultation validation experiments at Mt. Wuling in Hebei Province. The mountain-based GNSS occultation validation tests show that GNOS can acquire or track low-elevation radio signal for rising or setting occultation events. The refractivity profiles of GNOS obtained during the mountain-based experiment were compared with those from radiosondes. The results show that the refractivity profiles obtained by GNOS are consistent with those from the radiosonde. The rms of the differences between the GNOS and radiosonde refractivities is less than 3%.
Indexed BySCI
Document Type期刊论文
Identifierhttp://ir.nssc.ac.cn/handle/122/4376
Collection空间环境部
Corresponding AuthorBai, WH (reprint author), Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing, Peoples R China.
Recommended Citation
GB/T 7714
Bai, W. H.,Sun, Y. Q.,Du, Q. F.,et al. An introduction to the FY3 GNOS instrument and mountain-top tests[J]. ATMOSPHERIC MEASUREMENT TECHNIQUES,2014,7(6):1817-1823.
APA Bai, W. H..,Sun, Y. Q..,Du, Q. F..,Yang, G. L..,Yang, Z. D..,...&Bai, WH .(2014).An introduction to the FY3 GNOS instrument and mountain-top tests.ATMOSPHERIC MEASUREMENT TECHNIQUES,7(6),1817-1823.
MLA Bai, W. H.,et al."An introduction to the FY3 GNOS instrument and mountain-top tests".ATMOSPHERIC MEASUREMENT TECHNIQUES 7.6(2014):1817-1823.
Files in This Item: Download All
File Name/Size DocType Version Access License
2014761817.pdf(289KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Bai, W. H.]'s Articles
[Sun, Y. Q.]'s Articles
[Du, Q. F.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Bai, W. H.]'s Articles
[Sun, Y. Q.]'s Articles
[Du, Q. F.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Bai, W. H.]'s Articles
[Sun, Y. Q.]'s Articles
[Du, Q. F.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 2014761817.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.