NSSC OpenIR  > 空间技术部
基于压缩感知超分辨鬼成像
Alternative TitleSuper-resolution ghost imaging via compressed sensing
李龙珍; 姚旭日; 刘雪峰; 俞文凯; 翟光杰
Department空间技术部
Source Publication物理学报
2014
Volume63Issue:22Pages:224201
ISSN1000-3290
Language中文
Keyword鬼成像 压缩感知 超分辨 稀疏测量
Abstract分辨率是成像系统的一个重要参数, 获得高分辨率图像一直是鬼成像系统的一个目标. 本文提出了以成像系统点扩散函数作为先验知识, 基于稀疏测量的超分辨压缩感知鬼成像重建模型. 搭建了一套计算鬼成像实验装置, 用于验证该模型对于提高鬼成像系统分辨率的有效性, 并与传统的鬼成像计算模型进行了对比. 实验表明, 利用该模型可突破成像系统衍射极限分辨率的限制, 得到超分辨鬼成像.
Other AbstractAchieving high resolution images is of great importance in ghost imaging. We present a super-resolution image reconstruction algorithm with sparse measurements based on the theory of compressed sensing and the prior knowledge of the point spread function of the ghost imaging system. A computational ghost imaging experimental setup with a digital mirror device is built to verify the effect of this algorithm on increasing the resolution of the ghost imaging system. In addition, we compare the result with that from the traditional ghost imaging algorithm. The experiments show that we can obtain super-resolution images by this algorithm with the sparse measurements. This approach can break through the Rayleigh limit of the imaging system and obtain super-resolution images.
Indexed BySCI ; EI ; CSCD
Citation statistics
Document Type期刊论文
Identifierhttp://ir.nssc.ac.cn/handle/122/4415
Collection空间技术部
Recommended Citation
GB/T 7714
李龙珍,姚旭日,刘雪峰,等. 基于压缩感知超分辨鬼成像[J]. 物理学报,2014,63(22):224201.
APA 李龙珍,姚旭日,刘雪峰,俞文凯,&翟光杰.(2014).基于压缩感知超分辨鬼成像.物理学报,63(22),224201.
MLA 李龙珍,et al."基于压缩感知超分辨鬼成像".物理学报 63.22(2014):224201.
Files in This Item: Download All
File Name/Size DocType Version Access License
20146322224201.pdf(787KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[李龙珍]'s Articles
[姚旭日]'s Articles
[刘雪峰]'s Articles
Baidu academic
Similar articles in Baidu academic
[李龙珍]'s Articles
[姚旭日]'s Articles
[刘雪峰]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李龙珍]'s Articles
[姚旭日]'s Articles
[刘雪峰]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 20146322224201.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.