NSSC OpenIR  > 空间技术部
基于大气电场特征的天气现象识别算法研究
Alternative TitleWeather Recognition Algorithm Based on the Characteristics of Atmospheric Electric Field Signal
康海龙; 刘成; 姜秀杰
Department空间技术部
Source Publication计算机仿真
2014
Volume31Issue:12Pages:312
ISSN1006-9348
Language中文
Keyword大气电场 天气识别 小波能量谱 神经网络
Abstract由于天气受到多种因素综合影响,具有时变性和不确定性,大气电场对气溶胶含量、水汽含量、云量、温度等要素的变化有着敏锐的反应,不同的天气条件下大气电场呈现出不同的特性。为提高天气识别准确率,提出一种利用大气电场特征的天气识别算法。首先利用统计学和小波能量谱分析方法,提取大气电场的时幅域、频域特征,然后进行归一化处理,最后采用BP神经网络技术对特征进行训练,建立天气现象识别模型。实验结果表明,大气电场的特征,有助于了解大气电场与气候变化之间的关系,可对晴天、阴天、雨天和雷暴等典型天气进行识别,提高了天气现象自动化观测水平。
Other AbstractThe weather which is affected by many factors has changeable and uncertain,Aerosol content, moisture content,cloud cover, temperature, and other factors have a keen effect on the atmospheric electric field. Under different weather conditions,atmospheric electric field exhibit different characteristics. A weather phenomenon recognition algorithm is put forward based on the characteristics of the atmospheric electric field. Atmospheric electric field amplitude domain, frequency domain characteristics are extracted by the use of statistical methods and wavelet energy spectrum analysis and then normalized,and finally are trained by using BP neural network technology features,weather phenomena recognition model is established. Experimental results show that characteristics of atmospheric electric field are helpful to understand the relationship between climate change and atmospheric electric field. The algorithm can achieve the recognition of sunny,cloudy,rainy and thunderstorms weather phenomena. These works are of great significance to promote the automatic ground meteorological observation of all elements.
Indexed ByCSCD
Citation statistics
Document Type期刊论文
Identifierhttp://ir.nssc.ac.cn/handle/122/4432
Collection空间技术部
Recommended Citation
GB/T 7714
康海龙,刘成,姜秀杰. 基于大气电场特征的天气现象识别算法研究[J]. 计算机仿真,2014,31(12):312.
APA 康海龙,刘成,&姜秀杰.(2014).基于大气电场特征的天气现象识别算法研究.计算机仿真,31(12),312.
MLA 康海龙,et al."基于大气电场特征的天气现象识别算法研究".计算机仿真 31.12(2014):312.
Files in This Item: Download All
File Name/Size DocType Version Access License
20143112312.pdf(762KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[康海龙]'s Articles
[刘成]'s Articles
[姜秀杰]'s Articles
Baidu academic
Similar articles in Baidu academic
[康海龙]'s Articles
[刘成]'s Articles
[姜秀杰]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[康海龙]'s Articles
[刘成]'s Articles
[姜秀杰]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 20143112312.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.