NSSC OpenIR  > 微波遥感部
结合活动区光球磁场参量和黑子参量的太阳耀斑预报模型
Alternative TitleSolar flare forecasting model with active region photospheric magnetic field properties and sunspot factors
李蓉; 朱杰; 崔延美; lirong@bao.ac.cn
Department微波遥感部
Source Publication科学通报
2013
Volume58Issue:19Pages:1845-1850
ISSN0023-074X
Language中文
Keyword太阳耀斑 预报因子 黑子数据 太阳光球磁场 多层感知器
Abstract尝试将太阳活动区磁场特征物理量与黑子参量结合起来研究太阳耀斑短期预报,探讨综合预报因子在耀斑预报中有效性.太阳黑子参量选取黑子面积、磁分型、Macintosh分型;活动区光球磁场特征物理量选择纵向磁场最大水平梯度、强梯度中性线长度、孤立奇点数目.首先对上述参量的原始数据集通过产率拟合得到规范化的建模数据集,应用多层感知机神经网络方法建立耀斑预报模型.将综合预报模型的预报结果和单独采用黑子数据和磁场参量的两个模型进行了比对,结果显示二者相结合的预报模型的预报准确率有所提高,同时虚报率有所下降.
Other AbstractSolar active region photospheric magnetic physical properties and sunspots factors are connected to research on solar flare short term forecasting. The significance of integrated parameters is discussed. Sunspots parameters are area, magnetic classification, Macintosh classification; and the magnetic physical properties are parameterized with the maximum horizontal gradient, the length of neutral line with the strong gradients, the number of singular points. Using flare productivity fitting function, the initial data set of predictors is normalized to form the modeling data set. Based on this data set, multi-layer perceptron is applied to building flare forecasting model. In experiment, the integrated forecasting model is compared with other two models which take sunspots and magnetic parameters separately. The results indicate that the integrated model has a higher accuracy rate and a lower false alarm rate.
Indexed ByCSCD
Citation statistics
Cited Times:3[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.nssc.ac.cn/handle/122/5010
Collection微波遥感部
Corresponding Authorlirong@bao.ac.cn
Recommended Citation
GB/T 7714
李蓉,朱杰,崔延美,等. 结合活动区光球磁场参量和黑子参量的太阳耀斑预报模型[J]. 科学通报,2013,58(19):1845-1850.
APA 李蓉,朱杰,崔延美,&lirong@bao.ac.cn.(2013).结合活动区光球磁场参量和黑子参量的太阳耀斑预报模型.科学通报,58(19),1845-1850.
MLA 李蓉,et al."结合活动区光球磁场参量和黑子参量的太阳耀斑预报模型".科学通报 58.19(2013):1845-1850.
Files in This Item: Download All
File Name/Size DocType Version Access License
201358191845.pdf(916KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[李蓉]'s Articles
[朱杰]'s Articles
[崔延美]'s Articles
Baidu academic
Similar articles in Baidu academic
[李蓉]'s Articles
[朱杰]'s Articles
[崔延美]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李蓉]'s Articles
[朱杰]'s Articles
[崔延美]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 201358191845.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.