NSSC OpenIR  > 微波遥感部
一种改进的局部线性回归估计器及其在雷达高度计海况偏差估计中的应用
Alternative TitleImproved Local Linear Regression Estimator and Its Application to Estimation for Radar Altimeter Sea State Bias
蒋茂飞; 许可; 刘亚龙; 王磊
Department微波遥感部
Source Publication电子与信息学报
2016
Volume38Issue:9Pages:2314-2320
ISSN1009-5896
Language中文
Keyword雷达高度计 海况偏差 非参数估计 Llr估计器
Abstract在建立雷达高度计海况偏差(Sea State Bias, SSB)非参数模型时,通常会用到局部线性回归(Local Linear Regression, LLR)估计器,而传统的局部线性回归估计器涉及高维矩阵运算,当建模的数据量较大时,估计海况偏差需要大量的时间,从而使得非参数估计方法很难用于高维海况偏差模型。该文提出一种改进的局部线性回归(Improved Local Linear Regression, ILLR)估计器,可以避免传统的LLR估计器所需的高维矩阵运算,在不影响海况偏差估计结果的条件下,将局部线性回归估计器获取加权函数的时间复杂度由降低为,从而大幅地降低估计海况偏差所需的时间,为实现高维非参数海况偏差模型的实时运算奠定了基础。
Other AbstractThe Local Linear Regression (LLR) estimator is usually used when developing a nonparametric model for radar altimeter Sea State Bias (SSB). However, the conventional LLR estimator contains matrices with high dimension. When a large number of data are used to develop the SSB model, the SSB estimation costs too much time. Therefore, the nonparametric estimation method can hardly be used to develop high-dimensional SSB models. This paper presents an Improved LLR (ILLR) estimator, complexity from to which can avoid high-dimensional matrix operations. The improved LLR estimator can greatly reduce the time for SSB estimation without affecting the estimated accuracy. So the improved LLR estimator can laid the foundation for high-dimensional SSB models.
Indexed ByEI ; CSCD
Citation statistics
Document Type期刊论文
Identifierhttp://ir.nssc.ac.cn/handle/122/5646
Collection微波遥感部
Corresponding Author许可
Recommended Citation
GB/T 7714
蒋茂飞,许可,刘亚龙,等. 一种改进的局部线性回归估计器及其在雷达高度计海况偏差估计中的应用[J]. 电子与信息学报,2016,38(9):2314-2320.
APA 蒋茂飞,许可,刘亚龙,&王磊.(2016).一种改进的局部线性回归估计器及其在雷达高度计海况偏差估计中的应用.电子与信息学报,38(9),2314-2320.
MLA 蒋茂飞,et al."一种改进的局部线性回归估计器及其在雷达高度计海况偏差估计中的应用".电子与信息学报 38.9(2016):2314-2320.
Files in This Item:
File Name/Size DocType Version Access License
20163892314-2320.pdf(1253KB)期刊论文作者接受稿开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[蒋茂飞]'s Articles
[许可]'s Articles
[刘亚龙]'s Articles
Baidu academic
Similar articles in Baidu academic
[蒋茂飞]'s Articles
[许可]'s Articles
[刘亚龙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[蒋茂飞]'s Articles
[许可]'s Articles
[刘亚龙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.