中国科学院国家空间科学中心机构知识库
Advanced  
NSSC OpenIR  > 微波遥感部  > 期刊论文
题名: 基于似圆阴影的光学遥感图像油罐检测
其他题名: Oil Tank Detection in Optical Remote Sensing Imagery Based on Quasi-circular Shadow
作者: 李轩; 刘云清
作者部门: 微波遥感部
关键词: 光学遥感图像 ; 似圆阴影区域 ; 视觉显著模型 ; 特征检测 ; 油罐
刊名: 电子与信息学报
ISSN号: 1009-5896
出版日期: 2016
卷号: 38, 期号:6, 页码:1489-1495
收录类别: CSCD
项目资助者: 国家973计划项目
中文摘要: 针对光学遥感图像中受阴影干扰的油罐目标识别率低的问题,该文提出一种将改进的视觉显著模型与似圆阴影区域特征检测相结合的由粗到精的油罐目标检测方法。首先建立改进的视觉显著模型,将油罐从复杂背景中粗分离。然后对分离结果中由油罐产生的似圆阴影区域进行精检测,得到疑似油罐目标。再去除阴影,获得油罐目标的初步检测结果。最后基于图搜索策略及先验知识,确定油罐目标并定位油库区域。实验结果表明,该方法对检测光学遥感图像中存在似圆阴影的油罐目标具有较高的鲁棒性和准确率。同时,在不同环境的光学遥感图像中使用该方法可快速准确地定位油库区域。
英文摘要: To deal with the issue of low oil tanks recognition rate in optical remote sensing image, an improved oil tanks detection method is proposed, which is based on the improved visual saliency model and quasi-circular shadow region. Firstly, the oil tanks are separated from the complex background by using the improved visual saliency model. Secondly, the circular shadow regions are finely detected, and the suspected oil tanks are obtained. Then, the shadow region and the preliminary detection result of oil tanks are obtained. Finally, the false oil tank targets are removed and oil depots are determined based on graph search strategy and prior knowledge. The proposed method is robust to the oil tanks in the optical remote sensing images, and can effectively detect the oil tanks in high recognition rate. The experimental results indicate that the proposed algorithm are fast and accurate to detect the oil tanks, which is suitable for optical remote sensing images of different spatial resolutions.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.nssc.ac.cn/handle/122/5689
Appears in Collections:微波遥感部_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
20163861489-1495.pdf(9030KB)期刊论文作者接受稿限制开放View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[李轩]'s Articles
[刘云清]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[李轩]‘s Articles
[刘云清]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 20163861489-1495.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院国家空间科学中心 - Feedback
Powered by CSpace