中国科学院国家空间科学中心机构知识库
Advanced  
NSSC OpenIR  > 空间环境部  > 期刊论文
题名: TIEGCM集合卡尔曼滤波同化模型设计及初步试验
其他题名: TIEGCM Ensemble Kalman Filter Assimilation Model Design and Preliminary Results
作者: 张亚楠; 吴小成; 胡雄
作者部门: 空间环境部
关键词: 电离层 ; 数据同化 ; 集合卡尔曼滤波 ; 同时同化
刊名: 空间科学学报
ISSN号: 0254-6124
出版日期: 2017
卷号: 37, 期号:2, 页码:168-176
收录类别: CSCD
项目资助者: 国家自然科学基金项目资助
中文摘要: 选择参数化的电离层热层理论模型TIEGCM作为背景模型,基于COSMIC掩星观测的电子密度廓线数据,应用集合卡尔曼滤波方法建立全球电离层电子密度同化模型,实现了全球电离层的电子密度同化.同化结果表明,该同化模型能将观测资料有效同化到背景模式中,获得全球三维电离层电子密度.与背景模式相比,同化得到的电子密度相对于观测值的偏差显著下降.对于有同化和无同化参与的试验,N_mF_2的标准偏差分别降低约60%和20%.此外,分组同化与同时同化的结果对比显示,平均偏差改善基本一致,同时同化后的标准偏差在峰值高度以上略有减小.
英文摘要: By using the parameterized ionosphere model TIEGCM as the background model, and based on the COSMIC observations, the global ionospheric electron density assimilation model is established using ensemble Kalman filter. Result shows that this model can effectively assimilate the observations into background model and acquire three-dimensional ionospheric electron density. By comparison to the background, the error between analysis and observations decreases significantly. The Root Mean Square Error (RMSE) of N_mF_2 decreases by about 60% for observations with assimilation, and 20% for observations without assimilation. The RMSE of h_mF_2 does not get improvement except for mean error. The results of Simultaneous Assimilation (SA) and Batches Assimilation (BA) are compared for this case. The time that the two methods spend in assimilation is about 6 to 7 minutes, which does not differ very much. SA needs nearly 8 GB storage while BA needs less than 2 GB. The statistic of electron density error shows that they nearly acquire the same mean error, but the SA gets relative better improvement in RMSE above 250 km height.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.nssc.ac.cn/handle/122/5828
Appears in Collections:空间环境部_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
2017372168-176.pdf(1426KB)期刊论文作者接受稿限制开放View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[张亚楠]'s Articles
[吴小成]'s Articles
[胡雄]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[张亚楠]‘s Articles
[吴小成]‘s Articles
[胡雄]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 2017372168-176.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院国家空间科学中心 - Feedback
Powered by CSpace