NSSC OpenIR  > 空间技术部
Double-threshold technique for achieving denoising in compressive imaging applications
Wang, Chao; Yao, Xuri; Zhao, Qing; Yao, XR (reprint author), Chinese Acad Sci, Natl Space Sci Ctr, Key Lab Elect & Informat Technol Space Syst, Beijing 100190, Peoples R China.
作者部门空间技术部
发表期刊CHINESE OPTICS LETTERS
2017
卷号15期号:12页码:121101
ISSN1671-7694
语种英语
摘要Single-pixel cameras, which employ either structured illumination or image modulation and compressive sensing algorithms, provide an alternative approach to imaging in scenarios where the use of a detector array is restricted or difficult because of cost or technological constraints. In this work, we present a robust imaging method based on compressive imaging that sets two thresholds to select the measurement data for image reconstruction. The experimental and numerical simulation results show that the proposed double-threshold compressive imaging protocol provides better image quality than previous compressive imaging schemes. Faster imaging speeds can be attained using this scheme because it requires less data storage space and computing time. Thus, this denoising method offers a very effective approach to promote the implementation of compressive imaging in real-time practical applications.
收录类别SCI ; EI ; CSCD
引用统计
文献类型期刊论文
条目标识符http://ir.nssc.ac.cn/handle/122/6125
专题空间技术部
通讯作者Yao, XR (reprint author), Chinese Acad Sci, Natl Space Sci Ctr, Key Lab Elect & Informat Technol Space Syst, Beijing 100190, Peoples R China.
推荐引用方式
GB/T 7714
Wang, Chao,Yao, Xuri,Zhao, Qing,et al. Double-threshold technique for achieving denoising in compressive imaging applications[J]. CHINESE OPTICS LETTERS,2017,15(12):121101.
APA Wang, Chao,Yao, Xuri,Zhao, Qing,&Yao, XR .(2017).Double-threshold technique for achieving denoising in compressive imaging applications.CHINESE OPTICS LETTERS,15(12),121101.
MLA Wang, Chao,et al."Double-threshold technique for achieving denoising in compressive imaging applications".CHINESE OPTICS LETTERS 15.12(2017):121101.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
20171512121101.pdf(379KB)期刊论文作者接受稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Chao]的文章
[Yao, Xuri]的文章
[Zhao, Qing]的文章
百度学术
百度学术中相似的文章
[Wang, Chao]的文章
[Yao, Xuri]的文章
[Zhao, Qing]的文章
必应学术
必应学术中相似的文章
[Wang, Chao]的文章
[Yao, Xuri]的文章
[Zhao, Qing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。