中国科学院国家空间科学中心机构知识库
Advanced  
NSSC OpenIR  > 微波遥感部  > 期刊论文
题名: Random Similarity-Based EntropyAlpha Classification of PolSAR Data
作者: Li, Dong; Yunhua Zhang(张云华)
作者部门: 微波遥感部
刊名: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN号: 1939-1404
出版日期: 2017
收录类别: EI
英文摘要: A fast and competent alternative to the widely used CloudePottier entropyalpha ($H/ \alpha $) classification is developed for the rapid response application of polarimetric synthetic aperture radar (PolSAR) data. Random similarity which measures both the scattering similarity and randomness of polarimetric scatterers is used to enable an $H/ \alpha $ -like classification in terms of two key parameters, i.e., the similarity-based angle $\alpha _{s}$ and entropy $H_{s}$, as the alternatives to the CloudePottier angle $\alpha $ and entropy H, respectively. Parameters $\alpha _{s}$ and $H_{s}$ maintain the same physical information as parameters $\alpha $ and H, so the existing knowledge regarding $\alpha $ and H can be naturally extended to them. Angle $\alpha _{s}$ measures scattering mechanism and is ranged within the same interval 0, 90 as $\alpha $ while entropy $H_{s}$ measures scattering randomness which is also a logarithm within the interval 0, 1 similar to H. The pixelwise eigendecomposition in the calculation of $\alpha $ and H is avoided for $\alpha _{s}$ and $H_{s}$, and the resulted efficiency improvement is, thus, considerable. By rigorously modeling the $\alpha _{s}\hbox{--}\alpha $ and the $H_{s}\hbox{--}H$ relationship to illustrate the competence of the $H_{s}\hbox{--}\alpha _{s}$ combination in discrimination of target and to identify the searching ranges for the boundary determination, an $H_{s}/ \alpha _{s}$ classification is then devised with the boundaries of the eight effective classes being determined by an optimization to minimize the misclassification and further integrated on different PolSAR images to remove the possible bias from dataset for general applicability. Comparative experiment on both space-borne and airborne PolSAR datasets with $H/ \alpha $ indicates that $H_{s}/ \alpha _{s}$ can achieve very consistent roll-invariant target discrimination as $H/ \alpha $ (overall accuracy 95, kappa coefficient 0.95) but with averagely 150 times higher efficiency although the LAPACK-based eigenanalysis tool has been used to accelerate the eigendecomposition for $H/ \alpha $. Preliminary result from the adaptive model-based classification reveals that the $H_{s}$-involved boundaries in $H_{s}/ \alpha _{s}$ are independent of a particular PolSAR dataset. IEEE
语种: 英语
内容类型: 期刊论文
URI标识: http://ir.nssc.ac.cn/handle/122/6130
Appears in Collections:微波遥感部_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
201708047313.pdf(1084KB)期刊论文作者接受稿限制开放View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Li, Dong]'s Articles
[Zhang, Yunhua]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Li, Dong]‘s Articles
[Zhang, Yunhua]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 201708047313.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院国家空间科学中心 - Feedback
Powered by CSpace