NSSC OpenIR  > 微波遥感部
Random Similarity-Based EntropyAlpha Classification of PolSAR Data
Li, Dong; Zhang, Yunhua
作者部门微波遥感部
发表期刊IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
2017
ISSN1939-1404
语种英语
摘要A fast and competent alternative to the widely used CloudePottier entropyalpha ($H/ \alpha $) classification is developed for the rapid response application of polarimetric synthetic aperture radar (PolSAR) data. Random similarity which measures both the scattering similarity and randomness of polarimetric scatterers is used to enable an $H/ \alpha $ -like classification in terms of two key parameters, i.e., the similarity-based angle $\alpha _{s}$ and entropy $H_{s}$, as the alternatives to the CloudePottier angle $\alpha $ and entropy H, respectively. Parameters $\alpha _{s}$ and $H_{s}$ maintain the same physical information as parameters $\alpha $ and H, so the existing knowledge regarding $\alpha $ and H can be naturally extended to them. Angle $\alpha _{s}$ measures scattering mechanism and is ranged within the same interval 0, 90 as $\alpha $ while entropy $H_{s}$ measures scattering randomness which is also a logarithm within the interval 0, 1 similar to H. The pixelwise eigendecomposition in the calculation of $\alpha $ and H is avoided for $\alpha _{s}$ and $H_{s}$, and the resulted efficiency improvement is, thus, considerable. By rigorously modeling the $\alpha _{s}\hbox{--}\alpha $ and the $H_{s}\hbox{--}H$ relationship to illustrate the competence of the $H_{s}\hbox{--}\alpha _{s}$ combination in discrimination of target and to identify the searching ranges for the boundary determination, an $H_{s}/ \alpha _{s}$ classification is then devised with the boundaries of the eight effective classes being determined by an optimization to minimize the misclassification and further integrated on different PolSAR images to remove the possible bias from dataset for general applicability. Comparative experiment on both space-borne and airborne PolSAR datasets with $H/ \alpha $ indicates that $H_{s}/ \alpha _{s}$ can achieve very consistent roll-invariant target discrimination as $H/ \alpha $ (overall accuracy 95, kappa coefficient 0.95) but with averagely 150 times higher efficiency although the LAPACK-based eigenanalysis tool has been used to accelerate the eigendecomposition for $H/ \alpha $. Preliminary result from the adaptive model-based classification reveals that the $H_{s}$-involved boundaries in $H_{s}/ \alpha _{s}$ are independent of a particular PolSAR dataset. IEEE
收录类别EI
文献类型期刊论文
条目标识符http://ir.nssc.ac.cn/handle/122/6130
专题微波遥感部
推荐引用方式
GB/T 7714
Li, Dong,Zhang, Yunhua. Random Similarity-Based EntropyAlpha Classification of PolSAR Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017.
APA Li, Dong,&Zhang, Yunhua.(2017).Random Similarity-Based EntropyAlpha Classification of PolSAR Data.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
MLA Li, Dong,et al."Random Similarity-Based EntropyAlpha Classification of PolSAR Data".IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2017).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
201708047313.pdf(1084KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Dong]的文章
[Zhang, Yunhua]的文章
百度学术
百度学术中相似的文章
[Li, Dong]的文章
[Zhang, Yunhua]的文章
必应学术
必应学术中相似的文章
[Li, Dong]的文章
[Zhang, Yunhua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 201708047313.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。