NSSC OpenIR  > 空间技术部
GRIDEN: An effective grid-based and density-based spatial clustering algorithm to support parallel computing
Deng, Chao; Song, Jinwei; Sun, Ruizhi; Cai, Saihua; Shi, Yinxue; Sun, Ruizhi (sunruizhi@cau.edu.cn)
作者部门空间技术部
发表期刊Pattern Recognition Letters
2018
卷号109页码:81-88
ISSN0167-8655
语种英语
关键词Grid Based Clustering Density Based Clustering Dbscan Griden Data Mining Massive Spatial Data Parallel Computing
摘要Density-based clustering has been widely used in many fields. A new effective grid-based and density-based spatial clustering algorithm, GRIDEN, is proposed in this paper, which supports parallel computing in addition to multi-density clustering. It constructs grids using hyper-square cells and provides users with parameter k to control the balance between efficiency and accuracy to increase the flexibility of the algorithm. Compared with conventional density-based algorithms, it achieves much higher performance by eliminating distance calculations among points based on the newly proposed concept of Ε-neighbor cells. Compared with conventional grid-based algorithms, it uses a set of symmetric (2k+1)D cells to identify dense cells and the density-connected relationships among cells. Therefore, the maximum calculated deviation of Ε-neighbor points in the grid-based algorithm can be controlled to an acceptable level through parameter k. In our experiments, the results demonstrate that GRIDEN can achieve a reliable clustering result that is infinite closed with respect to the exact DBSCAN as parameter k grows, and it requires computational time that is only linear to N. © 2017 Elsevier B.V.
收录类别SCI ; EI
文献类型期刊论文
条目标识符http://ir.nssc.ac.cn/handle/122/6143
专题空间技术部
通讯作者Sun, Ruizhi (sunruizhi@cau.edu.cn)
推荐引用方式
GB/T 7714
Deng, Chao,Song, Jinwei,Sun, Ruizhi,et al. GRIDEN: An effective grid-based and density-based spatial clustering algorithm to support parallel computing[J]. Pattern Recognition Letters,2018,109:81-88.
APA Deng, Chao,Song, Jinwei,Sun, Ruizhi,Cai, Saihua,Shi, Yinxue,&Sun, Ruizhi .(2018).GRIDEN: An effective grid-based and density-based spatial clustering algorithm to support parallel computing.Pattern Recognition Letters,109,81-88.
MLA Deng, Chao,et al."GRIDEN: An effective grid-based and density-based spatial clustering algorithm to support parallel computing".Pattern Recognition Letters 109(2018):81-88.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2017S016786551730417(2429KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Deng, Chao]的文章
[Song, Jinwei]的文章
[Sun, Ruizhi]的文章
百度学术
百度学术中相似的文章
[Deng, Chao]的文章
[Song, Jinwei]的文章
[Sun, Ruizhi]的文章
必应学术
必应学术中相似的文章
[Deng, Chao]的文章
[Song, Jinwei]的文章
[Sun, Ruizhi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2017S0167865517304178.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。