中国科学院国家空间科学中心机构知识库
Advanced  
NSSC OpenIR  > 空间科学部  > 期刊论文
题名: Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles
作者: Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.
作者部门: 空间科学部
通讯作者: Nehrir, Amin R. (amin.r.nehrir@nasa.gov)
刊名: Surveys in Geophysics
ISSN号: 0169-3298
出版日期: 2017
卷号: 38, 期号:6, 页码:1445-1482
收录类别: EI
英文摘要: A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity. © 2017, The Author(s).
语种: 英语
内容类型: 期刊论文
URI标识: http://ir.nssc.ac.cn/handle/122/6150
Appears in Collections:空间科学部_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
20173861445-1482.pdf(3003KB)期刊论文作者接受稿限制开放View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Nehrir, Amin R.]'s Articles
[Kiemle, Christoph]'s Articles
[Lebsock, Mathew D.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Nehrir, Amin R.]‘s Articles
[Kiemle, Christoph]‘s Articles
[Lebsock, Mathew D.]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 20173861445-1482.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院国家空间科学中心 - Feedback
Powered by CSpace