中国科学院国家空间科学中心机构知识库
Advanced  
NSSC OpenIR  > 微波遥感部  > 期刊论文
题名: 微波散射计反演海面风场的神经网络方法研究
其他题名: The Study on Oceanic Vector Wind Field Retrieve Technique based on Neural Networks of Microwave Scatterometer
作者: 陈坤堂; 董晓龙; 徐星欧; 郎姝燕
作者部门: 微波遥感部
关键词: 微波散射计 ; 海面风场反演 ; 神经网络 ; 中高风速 ; 海洋二号卫星(HY-2)
刊名: 遥感技术与应用
ISSN号: 1004-0323
出版日期: 2017
卷号: 32, 期号:4, 页码:683-690
收录类别: CSCD
中文摘要: 研究利用神经网络方法处理微波散射计数据,反演海面风场。重点研究海洋二号(HY-2)卫星微波散射计数据反演,特别是中高风速条件下的风场反演。其中风速的反演基于后向传播(Back Propagation,BP)神经网络;多解风向的反演基于混合密度(Mixture Density Network, MDN)神经网络,求解过程中的核函数采用高斯分布;网络训练的目标风场采用欧洲中期天气预报中心(European Centre for Medium-range Weather Foresting,ECMWF)模式风场。通过与ECMWF风场的比较,利用神经网络方法反演的风场可以满足HY-2微波散射计风场反演的精度要求。同时通过与国家卫星海洋应用中心发布的HY-2微波散射计L2B级风场产品相比较,表明该方法反演的风场更接近ECMWF模式风场。
英文摘要: The neural networks are used to retrieve wind fields for microwave scatterometer data,especially for data gained by the scatterometer onboard HY-2Asatellite(HSCAT)under high wind speed conditions. The retrieval of wind speed is based on Back Propagation(BP)neural network,while multiple solutions of wind direction inversion is realized by Mixture Density Network(MDN)neural network.During the process,Gaussian kernel function is employed.The wind field used in network training is from corresponding European Centre for Medium-range Weather Foresting(ECMWF).It is proved that wind fields retrieved in this paper could get results meeting the accuracy requirement for HSCAT by comparison with ECMWF wind fields.Results are also compared with the L2Bwind field products distributed by the National Satellite Oceanic Application Service,it is shown that the method in this paper gave results with closer values than L2Bproducts.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.nssc.ac.cn/handle/122/6178
Appears in Collections:微波遥感部_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
2017324683-690.pdf(4242KB)期刊论文作者接受稿限制开放View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[陈坤堂]'s Articles
[董晓龙]'s Articles
[徐星欧]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[陈坤堂]‘s Articles
[董晓龙]‘s Articles
[徐星欧]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 2017324683-690.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院国家空间科学中心 - Feedback
Powered by CSpace