NSSC OpenIR  > 空间技术部
Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications
Lin, Yanhui; Li, Xudong; Hu, Yang; Hu, Yang (yang.hu@polimi.it)
作者部门空间技术部
发表期刊Applied Soft Computing Journal
2018
ISSN1568-4946
语种英语
摘要Prognostics and Health Management (PHM) is an integrated technique for improving the availability and efficiency of high-value industry equipment and reducing the maintenance cost. One of the most challenging problems in PHM is how to effectively process the raw monitoring signal into the information-rich features that are readable enough for PHM modeling. In this paper, we propose an integrated hierarchical learning framework, which is capable to perform the unsupervised feature learning, diagnostics and prognostics modeling together. The proposed method is based on Auto-Encoders (trained by considering the L1-norm penalty) and Extreme Learning Machines (trained by considering the L2-norm penalty). The proposed method is applied on two different case studies considering the diagnostics of motor bearings and prognostics of turbofan engines, also the performances are compared with other commonly applied PHM approaches and machine learning tools. The obtained results demonstrate the superiority of the proposed method, especially the ability of extracting the relevant features from the non-informative and noisy signals and maintaining their efficiencies. © 2018 Elsevier B.V.
收录类别EI
文献类型期刊论文
条目标识符http://ir.nssc.ac.cn/handle/122/6186
专题空间技术部
通讯作者Hu, Yang (yang.hu@polimi.it)
推荐引用方式
GB/T 7714
Lin, Yanhui,Li, Xudong,Hu, Yang,et al. Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications[J]. Applied Soft Computing Journal,2018.
APA Lin, Yanhui,Li, Xudong,Hu, Yang,&Hu, Yang .(2018).Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications.Applied Soft Computing Journal.
MLA Lin, Yanhui,et al."Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications".Applied Soft Computing Journal (2018).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2018jasoc201801036.p(1977KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Yanhui]的文章
[Li, Xudong]的文章
[Hu, Yang]的文章
百度学术
百度学术中相似的文章
[Lin, Yanhui]的文章
[Li, Xudong]的文章
[Hu, Yang]的文章
必应学术
必应学术中相似的文章
[Lin, Yanhui]的文章
[Li, Xudong]的文章
[Hu, Yang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2018jasoc201801036.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。