NSSC OpenIR  > 空间环境部
FORECASTING OF IONOSPHERIC VERTICAL TOTAL ELECTRON CONTENT (TEC) USING LSTM NETWORKS
Sun, Wenqing; Xu, Long; Huang, Xin; Zhang, Weiqiang; Yuan, Tianjiao; Chen, Zhuo; Yan, Yihua; Sun, WQ (reprint author), Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing, Peoples R China.; Sun, WQ (reprint author), Shenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R China.
作者部门空间环境部
会议录名称PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2
2017
页码340-344
语种英语
ISSN号2160-133X
ISBN号978-1-5386-0408-3
摘要Ionosphere is an important space environment near the earth. Its disturbance would result in severe propagation effects to radio information system, thus causing bad influences on communication, navigation, radar and so on. The total electron content (TEC) is an important parameter to present the disturbance of ionosphere, so TEC forecast is very meaningful in scientific research field. In this paper, we propose a long short-term memory (LSTM) based model to predict ionospheric vertical TEC of Beijing. The input of our model is a time sequence consisting of the vector of daily TECs and other closely related parameters. The output is TECs of future 24 hours. The result shows the root of mean square (RMS) error of test data can reach 3.50 and RMS error is less than this number during the period of low solar activity. Compared to multilayer perceptron network, LSTM is more promising and reliable to forecast ionospheric TEC.
关键词Ionospheric Tec Lstm Forecast
会议名称International Conference on Machine Learning and Cybernetics (ICMLC)
会议日期JUL 09-12, 2017
会议地点Ningbo, PEOPLES R CHINA
收录类别EI ; CPCI
文献类型会议论文
条目标识符http://ir.nssc.ac.cn/handle/122/6230
专题空间环境部
通讯作者Sun, WQ (reprint author), Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing, Peoples R China.; Sun, WQ (reprint author), Shenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R China.
推荐引用方式
GB/T 7714
Sun, Wenqing,Xu, Long,Huang, Xin,et al. FORECASTING OF IONOSPHERIC VERTICAL TOTAL ELECTRON CONTENT (TEC) USING LSTM NETWORKS[C],2017:340-344.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
201708108945.pdf(505KB)会议论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Wenqing]的文章
[Xu, Long]的文章
[Huang, Xin]的文章
百度学术
百度学术中相似的文章
[Sun, Wenqing]的文章
[Xu, Long]的文章
[Huang, Xin]的文章
必应学术
必应学术中相似的文章
[Sun, Wenqing]的文章
[Xu, Long]的文章
[Huang, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。