中国科学院国家空间科学中心机构知识库
Advanced  
NSSC OpenIR  > 空间科学部  > 期刊论文
题名: A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA
作者: Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdelyi, Robert
作者部门: 空间科学部
通讯作者: Liu, Jiajia ; Ye, Yudong ; Shen, Chenglong ; Wang, Yuming ; Erdelyi, Robert
关键词: solar-terrestrial relations ; Sun: coronal mass ejections (CMEs)
刊名: ASTROPHYSICAL JOURNAL
ISSN号: 0004-637X
出版日期: 2018
卷号: 855, 期号:2, 页码:109
收录类别: SCI
项目资助者: Science and Technology Facility Council (STFC), UK [ST/M000826/1] ; Royal Society (UK) ; NSFC [41574165, 41774178]
英文摘要: Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of similar to 5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.
语种: 英语
内容类型: 期刊论文
URI标识: http://ir.nssc.ac.cn/handle/122/6239
Appears in Collections:空间科学部_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
20188552109.pdf(983KB)期刊论文作者接受稿限制开放View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Liu, Jiajia]'s Articles
[Ye, Yudong]'s Articles
[Shen, Chenglong]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Liu, Jiajia]‘s Articles
[Ye, Yudong]‘s Articles
[Shen, Chenglong]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 20188552109.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院国家空间科学中心 - Feedback
Powered by CSpace