NSSC OpenIR  > 空间环境部
基于深度学习递归神经网络的电离层总电子含量经验预报模型
Alternative TitlePrediction Model for Ionospheric Total Electron Content Based on Deep Learning Recurrent Neural Network
袁天娇; 陈艳红; 刘四清; 龚建村
Department空间环境部
Source Publication空间科学学报
2018
Volume38Issue:1Pages:48-57
ISSN0254-6124
Language中文
Keyword电离层暴 预报 递归神经网络 太阳风参数
Abstract利用行星际太阳风参数与太阳活动指数、地磁活动指数、电离层总电子含量格点化地图数据,首次基于一种能处理时间序列的深度学习递归神经网络(Recurrent Neural Network, RNN),建立提前24h的单站电离层TEC预报模型.对北京站(40°N,115°E)的预测结果显示,RNN对扰动电离层的预测误差低于反向传播神经网络(Back Propagation Neural Network, BPNN) 0.49~1.46 TECU,将太阳风参数加入预报因子模型后对电离层正暴预测准确率的提升可达16.8%. RNN对2001和2015年31个强电离层暴预报的均方根误差比BPNN低0.2 TECU,将太阳风参数加入RNN模型可使31个事件的平均预报误差降低0.36~0.47TECU.研究结果表明深度递归神经网络比BPNN更适用于电离层TEC的短期预报,且在预报因子中加入太阳风数据对电离层正暴的预报效果有明显改善.
Other AbstractA 24h ahead forecasting model for ionospheric Total Electron Content (TEC) at Beijing station is established based on the deep learning Recurrent Neural Network (RNN) for the first time. The model implementation requires solar 10.7 cm flux index,geomagnetic index ap, grid map of TEC, solar wind speed and the southward components of interplanetary magnetic field. The predicting results for Beijing station (40°N, 115°E) show that the Root Mean Square Error (RMSE) of the disturbed ionosphere TEC predicted by RNN model is lower than that of BPNN (Back Propagation Neural Network) model by 0.49~1.46 TECU. The forecasting accuracy of ionospheric positive storm by RNN model is increased by 16.8% with solar wind parameters. Furthermore, the RMSE of RNN model of 31 strong TEC storms in 2001 and 2015 are less than those of BPNN model by 0.2 TECU, and the RMSE of RNN model is decreased by 0.36~0.47TECU as solar wind parameters are added. The results indicate that RNN model is more reliable than BP model for short-term forecasting of TEC. Moreover, the addition of interplanetary solar wind parameters are helpful for predicting TEC positive storm.
Indexed ByCSCD
Citation statistics
Cited Times:1[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.nssc.ac.cn/handle/122/6258
Collection空间环境部
Recommended Citation
GB/T 7714
袁天娇,陈艳红,刘四清,等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报,2018,38(1):48-57.
APA 袁天娇,陈艳红,刘四清,&龚建村.(2018).基于深度学习递归神经网络的电离层总电子含量经验预报模型.空间科学学报,38(1),48-57.
MLA 袁天娇,et al."基于深度学习递归神经网络的电离层总电子含量经验预报模型".空间科学学报 38.1(2018):48-57.
Files in This Item:
File Name/Size DocType Version Access License
201838148-57.pdf(2428KB)期刊论文作者接受稿开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[袁天娇]'s Articles
[陈艳红]'s Articles
[刘四清]'s Articles
Baidu academic
Similar articles in Baidu academic
[袁天娇]'s Articles
[陈艳红]'s Articles
[刘四清]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[袁天娇]'s Articles
[陈艳红]'s Articles
[刘四清]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.