中国科学院国家空间科学中心机构知识库
Advanced  
NSSC OpenIR  > 空间环境部  > 期刊论文
题名: 基于深度学习递归神经网络的电离层总电子含量经验预报模型
其他题名: Prediction Model for Ionospheric Total Electron Content Based on Deep Learning Recurrent Neural Network
作者: 袁天娇; 陈艳红; 刘四清; 龚建村
作者部门: 空间环境部
关键词: 电离层暴 ; 预报 ; 递归神经网络 ; 太阳风参数
刊名: 空间科学学报
ISSN号: 0254-6124
出版日期: 2018
卷号: 38, 期号:1, 页码:48-57
收录类别: CSCD
项目资助者: 国家自然科学基金面上项目 ; 国家重点研发计划项目共同资助
中文摘要: 利用行星际太阳风参数与太阳活动指数、地磁活动指数、电离层总电子含量格点化地图数据,首次基于一种能处理时间序列的深度学习递归神经网络(Recurrent Neural Network, RNN),建立提前24h的单站电离层TEC预报模型.对北京站(40°N,115°E)的预测结果显示,RNN对扰动电离层的预测误差低于反向传播神经网络(Back Propagation Neural Network, BPNN) 0.49~1.46 TECU,将太阳风参数加入预报因子模型后对电离层正暴预测准确率的提升可达16.8%. RNN对2001和2015年31个强电离层暴预报的均方根误差比BPNN低0.2 TECU,将太阳风参数加入RNN模型可使31个事件的平均预报误差降低0.36~0.47TECU.研究结果表明深度递归神经网络比BPNN更适用于电离层TEC的短期预报,且在预报因子中加入太阳风数据对电离层正暴的预报效果有明显改善.
英文摘要: A 24h ahead forecasting model for ionospheric Total Electron Content (TEC) at Beijing station is established based on the deep learning Recurrent Neural Network (RNN) for the first time. The model implementation requires solar 10.7 cm flux index,geomagnetic index ap, grid map of TEC, solar wind speed and the southward components of interplanetary magnetic field. The predicting results for Beijing station (40°N, 115°E) show that the Root Mean Square Error (RMSE) of the disturbed ionosphere TEC predicted by RNN model is lower than that of BPNN (Back Propagation Neural Network) model by 0.49~1.46 TECU. The forecasting accuracy of ionospheric positive storm by RNN model is increased by 16.8% with solar wind parameters. Furthermore, the RMSE of RNN model of 31 strong TEC storms in 2001 and 2015 are less than those of BPNN model by 0.2 TECU, and the RMSE of RNN model is decreased by 0.36~0.47TECU as solar wind parameters are added. The results indicate that RNN model is more reliable than BP model for short-term forecasting of TEC. Moreover, the addition of interplanetary solar wind parameters are helpful for predicting TEC positive storm.
语种: 中文
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.nssc.ac.cn/handle/122/6258
Appears in Collections:空间环境部_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
201838148-57.pdf(2428KB)期刊论文作者接受稿限制开放View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[袁天娇]'s Articles
[陈艳红]'s Articles
[刘四清]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[袁天娇]‘s Articles
[陈艳红]‘s Articles
[刘四清]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 201838148-57.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院国家空间科学中心 - Feedback
Powered by CSpace