NSSC OpenIR  > 空间环境部
Alternative TitleApplication of Time Series Method in Forecasting Near-space Atmospheric Wind
刘涛; 肖存英; 胡雄; 涂翠; 杨钧烽; 徐轻尘
Source Publication空间科学学报
Keyword临近空间 大气风场 时间序列法 Arma模型 预报
Abstract受多种因素影响,临近空间大气环境要素复杂多变,预报难度很大.本文采用时间序列法中的自回归滑动平均(ARMA)模型对临近空间大气风场开展统计预报方法研究,基于廊坊(39.4°N,116.7°W)中频雷达在88 km高度的大气纬向风数据开展预报试验.本次预报试验的样本数据为2015年9月24日至10月24日风场数据,利用过去7天数据对未来第8天风场数据进行预报.试验结果显示,ARMA模型对临近空间大气风场预报有一定的适用性.当风场变化规律性较强,即样本数据风场呈现出比较显著的24h周期性变化时,ARMA模型预报效果较好;当风场发生突变时,预报效果变差.与实测数据的对比结果表明,ARMA模型预报结果的误差在9~27m·s~(-1),预报效果优于同阶自回归(AR)模型,略优于高阶AR模型.
Other AbstractDue to many factors,near-space environment is complex and variable. Atmospheric environmental elements are hard to be forecasted. In this paper time series method is applied to the near-space wind forecasting. Autoregressive Moving Average (ARMA) model is adopted. The zonal wind data at 88 km altitude of Langfang (39.4°N,116.7°W) MF radar form September 24 to October 24,2015 is used for the forecasting test. In this test the data of past 7 days was used to forecast the data of the 8th day. Results suggest that ARMA model has certain applicability in forecasting the near-space atmospheric wind. The forecast effect is better when the winds have stronger regularity of change,i.e.,when the sample data show a significant 24-hour cycle,the forecast effect is better,and is worse when the winds have a mutation. Compared with the observed data,results show that the forecast error of ARMA model is 9~27m·s~(-1),and the forecast result of ARMA model is better than that of AR model with the same order,and is slightly better than that of higher-order AR model.
Indexed ByCSCD
Citation statistics
Cited Times:1[CSCD]   [CSCD Record]
Document Type期刊论文
Recommended Citation
GB/T 7714
刘涛,肖存英,胡雄,等. 时间序列法在临近空间大气风场预报中的应用[J]. 空间科学学报,2018,38(2):211-220.
APA 刘涛,肖存英,胡雄,涂翠,杨钧烽,&徐轻尘.(2018).时间序列法在临近空间大气风场预报中的应用.空间科学学报,38(2),211-220.
MLA 刘涛,et al."时间序列法在临近空间大气风场预报中的应用".空间科学学报 38.2(2018):211-220.
Files in This Item:
File Name/Size DocType Version Access License
2018382211-220.pdf(1037KB)期刊论文作者接受稿开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘涛]'s Articles
[肖存英]'s Articles
[胡雄]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘涛]'s Articles
[肖存英]'s Articles
[胡雄]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘涛]'s Articles
[肖存英]'s Articles
[胡雄]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.