NSSC OpenIR  > 空间环境部
Quantitative Prediction of High-Energy Electron Integral Flux at Geostationary Orbit Based on Deep Learning
Wei, Lihang; Zhong, Qiuzhen; Lin, Ruilin; Wang, Jingjing; Liu, Siqing; Cao, Yong; Zhong, QZ (reprint author), Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China.; Zhong, QZ (reprint author), Univ Chinese Acad Sci, Beijing, Peoples R China.
作者部门空间环境部
发表期刊SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
2018
卷号16期号:7页码:903
ISSN1542-7390
语种英语
摘要The deep learning method of long short-term memory (LSTM) is applied to develop a model to predict the daily >2-MeV electron integral flux 1 day ahead at geostationary orbit. The inputs to the model include geomagnetic and solar wind parameters such as Kp, Ap, Dst, solar wind speed, magnetopause subsolar distance, and the value of >2-MeV electron integral flux itself over the previous five consecutive days. The model is trained on the data from the periods 1999-2007 and 2011-2016, and the efficiency of the model is tested on the 2008-2010 period. We experiment with different input combinations and find that when the model takes daily >2-MeV electron integral flux, daily averaged magnetopause subsolar distance, and daily summed Kp index as inputs, the prediction efficiencies for 2008, 2009, and 2010 are 0.833, 0.896, and 0.911, respectively. This value reaches 0.900 for 2008, when hourly >2-MeV electron integral flux, hourly magnetopause subsolar distance, and daily summed Kp index are taken as inputs, with training on the remaining data from 19 June 2003 to 13 April 2010. The prediction efficiencies of the persistence model and the 27-order autoregressive model for the same tested time period are 0.679 and 0.743, respectively. Therefore, the model developed based on the LSTM method can improve the prediction efficiency significantly for daily >2-MeV electron integral flux 1 day ahead at geostationary orbit. me earlier models
收录类别SCI
文献类型期刊论文
条目标识符http://ir.nssc.ac.cn/handle/122/6391
专题空间环境部
通讯作者Zhong, QZ (reprint author), Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China.; Zhong, QZ (reprint author), Univ Chinese Acad Sci, Beijing, Peoples R China.
推荐引用方式
GB/T 7714
Wei, Lihang,Zhong, Qiuzhen,Lin, Ruilin,et al. Quantitative Prediction of High-Energy Electron Integral Flux at Geostationary Orbit Based on Deep Learning[J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS,2018,16(7):903.
APA Wei, Lihang.,Zhong, Qiuzhen.,Lin, Ruilin.,Wang, Jingjing.,Liu, Siqing.,...&Zhong, QZ .(2018).Quantitative Prediction of High-Energy Electron Integral Flux at Geostationary Orbit Based on Deep Learning.SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS,16(7),903.
MLA Wei, Lihang,et al."Quantitative Prediction of High-Energy Electron Integral Flux at Geostationary Orbit Based on Deep Learning".SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS 16.7(2018):903.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2018SW001829.pdf(2025KB)期刊论文作者接受稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Lihang]的文章
[Zhong, Qiuzhen]的文章
[Lin, Ruilin]的文章
百度学术
百度学术中相似的文章
[Wei, Lihang]的文章
[Zhong, Qiuzhen]的文章
[Lin, Ruilin]的文章
必应学术
必应学术中相似的文章
[Wei, Lihang]的文章
[Zhong, Qiuzhen]的文章
[Lin, Ruilin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。