NSSC OpenIR  > 空间技术部
Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications
Lin, Yanhui1; Li, Xudong2; Hu, Yang3
作者部门空间技术部
发表期刊APPLIED SOFT COMPUTING
2018
卷号72页码:555-564
DOI10.1016/j.asoc.2018.01.036
ISSN1568-4946
语种英语
关键词Feature learning Auto-encoder Extreme learning machines Prognostics and health management Motor bearing Turbofan engine
摘要Prognostics and Health Management (PHM) is an integrated technique for improving the availability and efficiency of high-value industry equipment and reducing the maintenance cost. One of the most challenging problems in PHM is how to effectively process the raw monitoring signal into the information-rich features that are readable enough for PHM modeling. In this paper, we propose an integrated hierarchical learning framework, which is capable to perform the unsupervised feature learning, diagnostics and prognostics modeling together. The proposed method is based on Auto-Encoders (trained by considering the Li-norm penalty) and Extreme Learning Machines (trained by considering the L-2-norm penalty). The proposed method is applied on two different case studies considering the diagnostics of motor bearings and prognostics of turbofan engines, also the performances are compared with other commonly applied PHM approaches and machine learning tools. The obtained results demonstrate the superiority of the proposed method, especially the ability of extracting the relevant features from the non-informative and noisy signals and maintaining their efficiencies. (C) 2018 Elsevier B.V. All rights reserved.
收录类别SCI ; EI
引用统计
文献类型期刊论文
条目标识符http://ir.nssc.ac.cn/handle/122/6558
专题空间技术部
作者单位1.School of Reliability and Systems Engineering, Beihang University, Beijing, China;
2.National Space Science Center, Beijing, China;
3.Science and Technology on Complex Aviation System Simulation Laboratory, Beijing,9236, China
推荐引用方式
GB/T 7714
Lin, Yanhui,Li, Xudong,Hu, Yang. Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications[J]. APPLIED SOFT COMPUTING,2018,72:555-564.
APA Lin, Yanhui,Li, Xudong,&Hu, Yang.(2018).Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications.APPLIED SOFT COMPUTING,72,555-564.
MLA Lin, Yanhui,et al."Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications".APPLIED SOFT COMPUTING 72(2018):555-564.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
201872555-564.pdf(1977KB)期刊论文出版稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Yanhui]的文章
[Li, Xudong]的文章
[Hu, Yang]的文章
百度学术
百度学术中相似的文章
[Lin, Yanhui]的文章
[Li, Xudong]的文章
[Hu, Yang]的文章
必应学术
必应学术中相似的文章
[Lin, Yanhui]的文章
[Li, Xudong]的文章
[Hu, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。