NSSC OpenIR  > 空间科学部
Prediction of Solar Wind Speed at 1 AU Using an Artificial Neural Network
Yang, Yi; Shen, Fang; Yang, Zicai; Feng, Xueshang
作者部门空间科学部
发表期刊SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
2018
卷号16期号:9页码:1227-1244
DOI10.1029/2018SW001955
ISSN1542-7390
语种英语
摘要A hybrid intelligent source surface model applying the artificial neural network tactic for solar wind speed prediction is presented in this paper. The model is a hybrid system merging various observational and theoretical information as input. Different inputs are tested including individual parameters and their combinations in order to select an optimum. Then, the optimal model is implemented for prediction. The prediction is validated by both error analysis and event-based analysis from 2007 to 2016. The overall correlation coefficient is 0.74, and the root-mean-square error is 68 km/s. The probability for detecting a high-speed-event is 0.68, the positive predicted value is 0.73, and the threat score is 0.55.
收录类别SCI
引用统计
文献类型期刊论文
条目标识符http://ir.nssc.ac.cn/handle/122/6567
专题空间科学部
推荐引用方式
GB/T 7714
Yang, Yi,Shen, Fang,Yang, Zicai,et al. Prediction of Solar Wind Speed at 1 AU Using an Artificial Neural Network[J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS,2018,16(9):1227-1244.
APA Yang, Yi,Shen, Fang,Yang, Zicai,&Feng, Xueshang.(2018).Prediction of Solar Wind Speed at 1 AU Using an Artificial Neural Network.SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS,16(9),1227-1244.
MLA Yang, Yi,et al."Prediction of Solar Wind Speed at 1 AU Using an Artificial Neural Network".SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS 16.9(2018):1227-1244.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2018SW001955.pdf(10116KB)期刊论文出版稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Yi]的文章
[Shen, Fang]的文章
[Yang, Zicai]的文章
百度学术
百度学术中相似的文章
[Yang, Yi]的文章
[Shen, Fang]的文章
[Yang, Zicai]的文章
必应学术
必应学术中相似的文章
[Yang, Yi]的文章
[Shen, Fang]的文章
[Yang, Zicai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。