NSSC OpenIR  > 微波遥感部
Synthesis of Subarrayed Linear Array via l1-norm Minimization Compressed Sensing Method
Zhao, Xiaowen1; Yang, Qingshan1; Zhang, Yunhua2
作者部门微波遥感部
会议录名称Proceedings of the 2018 IEEE 7th Asia-Pacific Conference on Antennas and Propagation, APCAP 2018
2018
页码124-125
DOI10.1109/APCAP.2018.8538246
语种英语
ISBN号9781538656488
摘要A novel method is proposed for synthesizing subar-rayed linear array using as few subarrays as possible. According to Compressed Sensing theory, the synthesis herein can be for-mulated as a convex problem with l1norm minimization by de-veloping a sparse basis, which benefits from the fact that the element weighting vector is compressible and has a sparse representation. In this way, the corresponding parameters including the number of subarrays, the subarray weights and sizes can be optimized simultaneously by sequential convex optimization. The proposed method is very easy to implement and has good computational efficiency. Numerical experiments are carried out to show the performance of the proposed method. © 2018 IEEE.
会议名称7th IEEE Asia-Pacific Conference on Antennas and Propagation, APCAP 2018
会议日期August 5, 2018 - August 8, 2018
会议地点Auckland, New zealand
收录类别EI
引用统计
文献类型会议论文
条目标识符http://ir.nssc.ac.cn/handle/122/6718
专题微波遥感部
作者单位1.Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing, China;
2.School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Zhao, Xiaowen,Yang, Qingshan,Zhang, Yunhua. Synthesis of Subarrayed Linear Array via l1-norm Minimization Compressed Sensing Method[C],2018:124-125.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
201808538246.pdf(111KB)会议论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Xiaowen]的文章
[Yang, Qingshan]的文章
[Zhang, Yunhua]的文章
百度学术
百度学术中相似的文章
[Zhao, Xiaowen]的文章
[Yang, Qingshan]的文章
[Zhang, Yunhua]的文章
必应学术
必应学术中相似的文章
[Zhao, Xiaowen]的文章
[Yang, Qingshan]的文章
[Zhang, Yunhua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。