NSSC OpenIR  > 空间科学部
Application of the Fengyun 3 C GNSS occultation sounder for assessing the global ionospheric response to a magnetic storm event
Bai, Weihua; Wang, Guojun; Sun, Yueqiang; Shi, Jiankui; Yang, Guanglin; Meng, Xiangguang; Wang, Dongwei; Du, Qifei; Wang, Xianyi; Xia, Junming; Cai, Yuerong; Liu, Congliang; Li, Wei; Wu, Chunjun; Zhao, Danyang; Wu, Di; Liu, Cheng
Department空间科学部
Source PublicationATMOSPHERIC MEASUREMENT TECHNIQUES
2019
Volume12Issue:3Pages:1483-1493
DOI10.5194/amt-12-1483-2019
ISSN1867-1381
Language英语
AbstractThe rapid advancement of global navigation satellite system (GNSS) occultation technology in recent years has made it one of the most advanced space-based remote sensing technologies of the 21st century. GNSS radio occultation has many advantages, including all-weather operation, global coverage, high vertical resolution, high precision, long-term stability, and self-calibration. Data products from GNSS occultation sounding can greatly enhance ionospheric observations and contribute to space weather monitoring, forecasting, modeling, and research. In this study, GNSS occultation sounder (GNOS) results from a radio occultation sounding payload aboard the Fengyun 3 C (FY3-C) satellite were compared with ground-based ionosonde observations. Correlation coefficients for peak electron density (NmF2) derived from GNOS Global Position System (GPS) and Beidou navigation system (BDS) products with ionosonde data were higher than 0.9, and standard deviations were less than 20 %. Global ionospheric effects of the strong magnetic storm event in March 2015 were analyzed using GNOS results supported by ionosonde observations. The magnetic storm caused a significant disturbance in NmF2 level. Suppressed daytime and nighttime NmF2 levels indicated mainly negative storm conditions. In two longitude section zones of geomagnetic inclination between 40 and 80 degrees, the results of average NmF2 observed by GNOS and ground-based ionosondes showed the same basic trends during the geomagnetic storm and confirmed the negative effect of this storm event on the ionosphere. The analysis demonstrates the reliability of the GNSS radio occultation sounding instrument GNOS aboard the FY3-C satellite and confirms the utility of ionosphere products from GNOS for statistical and event-specific ionospheric physical analyses. Future FY3 series satellites and increasing numbers of Beidou navigation satellites will provide increasing GNOS occultation data on the ionosphere, which will contribute to ionosphere research and forecasting applications.
Indexed BySCI
Citation statistics
Document Type期刊论文
Identifierhttp://ir.nssc.ac.cn/handle/122/6957
Collection空间科学部
Recommended Citation
GB/T 7714
Bai, Weihua,Wang, Guojun,Sun, Yueqiang,et al. Application of the Fengyun 3 C GNSS occultation sounder for assessing the global ionospheric response to a magnetic storm event[J]. ATMOSPHERIC MEASUREMENT TECHNIQUES,2019,12(3):1483-1493.
APA Bai, Weihua.,Wang, Guojun.,Sun, Yueqiang.,Shi, Jiankui.,Yang, Guanglin.,...&Liu, Cheng.(2019).Application of the Fengyun 3 C GNSS occultation sounder for assessing the global ionospheric response to a magnetic storm event.ATMOSPHERIC MEASUREMENT TECHNIQUES,12(3),1483-1493.
MLA Bai, Weihua,et al."Application of the Fengyun 3 C GNSS occultation sounder for assessing the global ionospheric response to a magnetic storm event".ATMOSPHERIC MEASUREMENT TECHNIQUES 12.3(2019):1483-1493.
Files in This Item:
File Name/Size DocType Version Access License
2019amt-12-1483-2019(1029KB)期刊论文出版稿开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Bai, Weihua]'s Articles
[Wang, Guojun]'s Articles
[Sun, Yueqiang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Bai, Weihua]'s Articles
[Wang, Guojun]'s Articles
[Sun, Yueqiang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Bai, Weihua]'s Articles
[Wang, Guojun]'s Articles
[Sun, Yueqiang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.