NSSC OpenIR
集成学习在高误码率下AOS协议识别中的应用研究
Alternative TitleApplication of Ensemble Learning in AOS Protocol Recognition with High Bit Error Rate
朱明; 王春梅; 姚秀娟; 李雪
Source Publication宇航计测技术
2020
Volume40Issue:3Pages:80-87; AR:1000-7202(2020)40:3<80:JCXXZG>2.0.TX;2-X
ISSN1000-7202
Language中文
Keyword机器学习 集成学习 空间链路层协议 +高级在轨系统协议 协议识别 Machine learning Ensemble learning Space link layer protocol Advanced Orbiting Systems(AOS)protocol Protocol recognition
Abstract针对天基网络中高误码率的传输特点,为保证各个异构网络之间数据能够高效可靠的传输,采用空间链路层高级在轨系统协议设计一种基于集成学习的识别方法。该方法采用集成学习模型,学习AOS协议数据,构建基于集成学习的AOS协议识别模型,实现AOS协议的准确识别,并在高误码率情况下进行实验验证。实验结果表明,集成学习模型在AOS协议识别方面具有较好的识别效果,识别运行效率有显著提升,且在较高误码率即10~(-1)时依然可以保持稳定的识别效果。
Other AbstractIn the face of the transmission characteristics of high bit error rate in space-based networks,and to ensure the efficient and reliable transmission of data between heterogeneous networks,a recognition system method based on integrated learning for AOS(Advanced Orbiting Systems)protocol in spatial link layer is designed.This method uses the integrated learning model to learn the AOS protocol data,constructs the AOS protocol recognition model based on the integrated learning,realizes the AOS protocol recognition accurately,and carries on the experimental verification under the high bit error rate.The experimental results show that the integrated learning model has a good recognition effect in AOS protocol recognition,the recognition efficiency has been improved significantly,and it can still maintain a stable recognition effect at a high bit error rate of 10~(-1).
Indexed ByCSCD
Citation statistics
Document Type期刊论文
Identifierhttp://ir.nssc.ac.cn/handle/122/7405
Collection中国科学院国家空间科学中心
Affiliation1.朱明, 中国科学院国家空间科学中心
2.中国科学院大学, 北京
3.北京 100190
4.100049, 中国.
5.王春梅, 中国科学院国家空间科学中心, 北京 100190, 中国.
6.姚秀娟, 中国科学院国家空间科学中心, 北京 100190, 中国.
7.李雪, 中国科学院国家空间科学中心, 北京 100190, 中国.
8.Zhu Ming, Nation Space Science Center,Chinese Academy of Sciences
9.University of Chinese Academy of Sciences, Beijing
10.Beijing 100190
11.100049.
12.Wang Chunmei, Nation Space Science Center,Chinese Academy of Sciences, Beijing 100190, China.
13.Yao Xiujuan, Nation Space Science Center,Chinese Academy of Sciences, Beijing 100190, China.
14.Li Xue, Nation Space Science Center,Chinese Academy of Sciences, Beijing 100190, China.
Recommended Citation
GB/T 7714
朱明,王春梅,姚秀娟,等. 集成学习在高误码率下AOS协议识别中的应用研究[J]. 宇航计测技术,2020,40(3):80-87; AR:1000-7202(2020)40:3<80:JCXXZG>2.0.TX;2-X.
APA 朱明,王春梅,姚秀娟,&李雪.(2020).集成学习在高误码率下AOS协议识别中的应用研究.宇航计测技术,40(3),80-87; AR:1000-7202(2020)40:3<80:JCXXZG>2.0.TX;2-X.
MLA 朱明,et al."集成学习在高误码率下AOS协议识别中的应用研究".宇航计测技术 40.3(2020):80-87; AR:1000-7202(2020)40:3<80:JCXXZG>2.0.TX;2-X.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[朱明]'s Articles
[王春梅]'s Articles
[姚秀娟]'s Articles
Baidu academic
Similar articles in Baidu academic
[朱明]'s Articles
[王春梅]'s Articles
[姚秀娟]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[朱明]'s Articles
[王春梅]'s Articles
[姚秀娟]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.