NSSC OpenIR  > 空间技术部
Alternative TitleAutomatic real-time SVM-based ultrasonic rail flaw detection and classif ication system
郝炜; 李成桐; 北京8701信箱
Source Publication中国科学院研究生院学报
Keyword模式识别 超声波钢轨探伤 支持向量机 Dsp实时信号处理
Other AbstractThis paper describes a more efficient real time SVM(support vector machine)-based ultrasonic rail defect detection and classification system. Feature extraction is achieved based on the attribute of ultrasonic rail defect and then SVM classification prediction algorithm and statistical processing are used to realize classification and calculating the size of the rail defect . This machine learning algorithm is tested in DSP and the type , grade and location of the defects are displayed in real-time.
Indexed ByCSCD
Funding Project中国科学院空间科学与应用研究中心
Citation statistics
Document Type期刊论文
Corresponding Author北京8701信箱
Recommended Citation
GB/T 7714
郝炜,李成桐,北京8701信箱. 基于SVM的实时自动超声钢轨伤损检测分类系统(英文)[J]. 中国科学院研究生院学报,2009,26(4):517-521.
APA 郝炜,李成桐,&北京8701信箱.(2009).基于SVM的实时自动超声钢轨伤损检测分类系统(英文).中国科学院研究生院学报,26(4),517-521.
MLA 郝炜,et al."基于SVM的实时自动超声钢轨伤损检测分类系统(英文)".中国科学院研究生院学报 26.4(2009):517-521.
Files in This Item: Download All
File Name/Size DocType Version Access License
2009264517.pdf(305KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[郝炜]'s Articles
[李成桐]'s Articles
[北京8701信箱]'s Articles
Baidu academic
Similar articles in Baidu academic
[郝炜]'s Articles
[李成桐]'s Articles
[北京8701信箱]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[郝炜]'s Articles
[李成桐]'s Articles
[北京8701信箱]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 2009264517.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.