NSSC OpenIR  > 空间技术部
Alternative TitleHigh-accurate Carrier Acquisition Based on Maximum Likelihood Estimation of Refined Frequency
王乐; 王竹刚; 熊蔚; 北京8701信箱
Source Publication电讯技术
Keyword深空通信 最大似然频率精细估计 载波捕获 相位最大似然估计 泛函不变性
Abstract深空通信中,星上对载波的主动捕获主要利用频率估计的方法.在实际载波捕获电路中,精确的频率估计值导入锁相环,使得锁相环捕获带余量充足.在锁相环带宽一定的情况下,估计精度的提高可以减少FFT实现点数.在FFT频率粗估计的基础上,通过频率精细估计算法可提高估计精度.为获得估计精度更高的频率精细估计算法,利用最大似然泛函不变性推导了频率精细估计的最大似然算法.载噪比在5 dB时,估计精度可以提高到FFT分辨率的10-4.仿真结果表明,该算法估计性能优于其他频率精细估计算法.
Other AbstractThe carrier initiative acquisition on board is mainly based on the frequency estimation in deep space communications. With the aid of data,the estimator performs well at low Signal-to-Noise Ratio(SNR). In the design of carrier acquisition,the accurate estimation of frequency aids the Phase Locked Loop(PLL). If the ac-quisition bandwidth of PLL is fixed,accurate estimation value helps to decrease Fast Fourier Transform(FFT) size. The refined estimation after FFT coarse estimation is applied to improve estimation accuracy. In order to achieve higher estimation accuracy,a Maximum Likelihood(ML)algorithm of refined estimation is derived via functional invariance. The estimation accuracy can achieve 10-4 when SNR is 5 dB. The simulation results pre-sent that the proposed algorithm outperforms other algorithms.
Funding Project中国科学院空间科学与应用研究中心
Document Type期刊论文
Corresponding Author北京8701信箱
Recommended Citation
GB/T 7714
王乐,王竹刚,熊蔚,等. 基于最大似然频率精细估计的载波捕获算法[J]. 电讯技术,2013,53(1):39-43.
APA 王乐,王竹刚,熊蔚,&北京8701信箱.(2013).基于最大似然频率精细估计的载波捕获算法.电讯技术,53(1),39-43.
MLA 王乐,et al."基于最大似然频率精细估计的载波捕获算法".电讯技术 53.1(2013):39-43.
Files in This Item: Download All
File Name/Size DocType Version Access License
301353139.pdf(998KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[王乐]'s Articles
[王竹刚]'s Articles
[熊蔚]'s Articles
Baidu academic
Similar articles in Baidu academic
[王乐]'s Articles
[王竹刚]'s Articles
[熊蔚]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王乐]'s Articles
[王竹刚]'s Articles
[熊蔚]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 301353139.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.